Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2016-12-26Konferenzveröffentlichung DOI: 10.1109/LCN.2016.123
Best of Both Worlds: Prioritizing Network Coding without Increased Space Complexity
Naumann, Roman
Dietzel, Stefan
Scheuermann, Björn
Mathematisch-Naturwissenschaftliche Fakultät
Random linear network coding simplifies routing decisions, improves throughput, and increases tolerance against packet loss. A substantial limitation, however, is delay: decoding requires as many independent linear combinations as data blocks. Hierarchical network coding purportedly solves this delay problem. It introduces layers to decode prioritized data blocks early, which may benefit video streaming applications or applications for sensor information collection. While hierarchical network coding reduces decoding delays, it introduces significant space complexity and additional decoding time. We propose a decoding algorithm that manages all prioritization layers in a joint decoder matrix. Analytical evaluation and performance measurements show that we maintain prioritization benefits without increased space complexity and improve decoding performance. With memory requirements independent of the number of layers, our algorithm facilitates more fine-grained prioritization layers to further the benefits of hierarchical network coding.
Files in this item
Thumbnail
296Ibp81Pq196.pdf — Adobe PDF — 285.6 Kb
MD5: fb0671bc4e9dc56012f0ebf9b82fe071
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.1109/LCN.2016.123
Permanent URL
https://doi.org/10.1109/LCN.2016.123
HTML
<a href="https://doi.org/10.1109/LCN.2016.123">https://doi.org/10.1109/LCN.2016.123</a>