Show simple item record

2007-12-06Diplomarbeit DOI: 10.18452/14085
Scaling properties of financial time series
dc.contributor.authorSchreier, David
dc.date.accessioned2017-06-18T02:16:53Z
dc.date.available2017-06-18T02:16:53Z
dc.date.created2008-01-07
dc.date.issued2007-12-06
dc.identifier.urihttp://edoc.hu-berlin.de/18452/14737
dc.description.abstractThis thesis will first criticize standard financial theory. The focus will be on return distributions, efficient market hypothesis and the independence of returns. Part two gives the intuition to look at markets in a different view. Namely the one proposed by B. Mandelbrot who has shown that nature itself can often be described with fractals. Then the relationship between fractal power laws and scaling will be explained. The main part focuses on the estimation of the tail index as a scaling parameter with the help of three different techniques: 1. OLS regression on a log-log plot, 2. Hill estimator and 3. the alpha exponent within the stable distribution. In the last section a different power law exponent will be estimated to test for long memory effects (i.e. nonperiodical cycles) in return distributions. The last section gives a conclusion.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectfractional Brownian motioneng
dc.subjectefficient market hypothesiseng
dc.subjectfractaleng
dc.subjectself-similarityeng
dc.subjectscalingeng
dc.subjectpower laweng
dc.subjectHursteng
dc.subject.ddc310 Sammlungen allgemeiner Statistiken
dc.subject.ddc330 Wirtschaft
dc.titleScaling properties of financial time series
dc.typemasterThesis
dc.identifier.urnurn:nbn:de:kobv:11-10082891
dc.identifier.doihttp://dx.doi.org/10.18452/14085
dc.contributor.refereeHärdle, Wolfgang Karl
local.edoc.pages79
local.edoc.type-nameDiplomarbeit
local.edoc.institutionWirtschaftswissenschaftliche Fakultät

Show simple item record