Show simple item record

2012-06-12Masterarbeit DOI: 10.18452/14167
Nonparametric Estimate for Conditional Quantiles of Time Series
dc.contributor.authorBalcau, Ioana
dc.date.accessioned2017-06-18T02:33:03Z
dc.date.available2017-06-18T02:33:03Z
dc.date.created2012-06-15
dc.date.issued2012-06-12
dc.identifier.urihttp://edoc.hu-berlin.de/18452/14819
dc.description.abstractThis paper investigates a nonparametric approach for estimating conditional quantiles of time series for dependent data. The considered estimate is obtained by inverting a kernel estimate of the conditional distribution function. We implement the technique on four simulated samples with light and heavy-tailed distributions and on real financial data, by calculating VaR using the nonparametric procedure. The good performance of the estimator is illustrated with backtesting.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectValue at Riskeng
dc.subjectNonparametriceng
dc.subjectBacktestingeng
dc.subjectConditional Quantileseng
dc.subjectKernel Estimationeng
dc.subject.ddc310 Sammlungen allgemeiner Statistiken
dc.subject.ddc330 Wirtschaft
dc.titleNonparametric Estimate for Conditional Quantiles of Time Series
dc.typemasterThesis
dc.subtitleAn application for VaR
dc.identifier.urnurn:nbn:de:kobv:11-100202513
dc.identifier.doihttp://dx.doi.org/10.18452/14167
dc.contributor.refereeHärdle, Wolfgang Karl
dc.contributor.refereeOkhrin, Ostap
local.edoc.pages37
local.edoc.type-nameMasterarbeit
local.edoc.institutionWirtschaftswissenschaftliche Fakultät

Show simple item record