Nonparametric Estimate for Conditional Quantiles of Time Series
dc.contributor.author | Balcau, Ioana | |
dc.date.accessioned | 2017-06-18T02:33:03Z | |
dc.date.available | 2017-06-18T02:33:03Z | |
dc.date.created | 2012-06-15 | |
dc.date.issued | 2012-06-12 | |
dc.identifier.uri | http://edoc.hu-berlin.de/18452/14819 | |
dc.description.abstract | This paper investigates a nonparametric approach for estimating conditional quantiles of time series for dependent data. The considered estimate is obtained by inverting a kernel estimate of the conditional distribution function. We implement the technique on four simulated samples with light and heavy-tailed distributions and on real financial data, by calculating VaR using the nonparametric procedure. The good performance of the estimator is illustrated with backtesting. | eng |
dc.language.iso | eng | |
dc.publisher | Humboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | Value at Risk | eng |
dc.subject | Nonparametric | eng |
dc.subject | Backtesting | eng |
dc.subject | Conditional Quantiles | eng |
dc.subject | Kernel Estimation | eng |
dc.subject.ddc | 310 Sammlungen allgemeiner Statistiken | |
dc.subject.ddc | 330 Wirtschaft | |
dc.title | Nonparametric Estimate for Conditional Quantiles of Time Series | |
dc.type | masterThesis | |
dc.subtitle | An application for VaR | |
dc.identifier.urn | urn:nbn:de:kobv:11-100202513 | |
dc.identifier.doi | http://dx.doi.org/10.18452/14167 | |
dc.contributor.referee | Härdle, Wolfgang Karl | |
dc.contributor.referee | Okhrin, Ostap | |
local.edoc.pages | 37 | |
local.edoc.type-name | Masterarbeit | |
local.edoc.institution | Wirtschaftswissenschaftliche Fakultät |