Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Abschlussarbeiten
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Abschlussarbeiten
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Abschlussarbeiten
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Abschlussarbeiten
  • View Item
2015-10-30Masterarbeit DOI: 10.18452/14261
Introduction of temporal and spatial dimensions into a recommender system
Navarro, Pierre
Wirtschaftswissenschaftliche Fakultät
Dieses Papier befasst sich mit einer Vorhersagemodellierung Problem und stellt die Werkzeuge und die Vorgehensweise, um es zu bekämpfen.
 
This paper deals with a predictive modelling problem and presents the tools and the approach to tackle it. More precisely, it starts out from a recommender engine operating in supermarkets, and especially from the model predicting whether the customers will use the discount they got from a coupon. This project aims to introduce temporal and spatial dimensions into this model, since customers may have different behaviour according to these two aspects. Improving a predictive model first means to set the proper indicators in order to evaluate its performance. Different metrics are thus introduced on that purpose and selected mainly regarding their suitability towards our business problem. Furthermore, the main highlight of this thesis is made on comparing different models by assessing their predictive power. The temporal and spatial dimensions are successively introduced, by modifying the inputs of the current model and keeping the same method. Through the performance indicators previously defined, we assess whether a new dimension is worth being kept, while getting some insights about the customers' behaviour.
 
Files in this item
Thumbnail
navarro.pdf — Adobe PDF — 675.6 Kb
MD5: d513ee1a4ee22f9462ee8ee3b30a2eff
Cite
BibTeX
EndNote
RIS
Namensnennung - Keine kommerzielle Nutzung - Keine BearbeitungNamensnennung - Keine kommerzielle Nutzung - Keine BearbeitungNamensnennung - Keine kommerzielle Nutzung - Keine BearbeitungNamensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/14261
Permanent URL
https://doi.org/10.18452/14261
HTML
<a href="https://doi.org/10.18452/14261">https://doi.org/10.18452/14261</a>