Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2002-01-18Dissertation DOI: 10.18452/14684
Single neuron dynamics
models linking theory and experiment
Benda, Jan
Mathematisch-Naturwissenschaftliche Fakultät I
Das Neuron ist das zentrale Element in der Informationsverarbeitung im Nervensystem. In dieser Arbeit werden verschiedene Aspekte der Spikegenerierung sowohl theoretisch als auch experimentell untersucht. Phasen-Rotatoren verschiedener Komplexität werden zur Vorhersage von Spikezeitpunkten vorgestellt. Die Kennlinie eines Neurons wird dabei als wichtiger Parameter für diese Modelle verwendet, damit diese leicht auf echte Neurone anwendbar sind. Die Phasenantwortkurve als ein zweiter wichtiger Aspekt der Spikedynamik wird zur Erweiterung der Modelle verwendet. Solange ein Neuron in seinem überschwelligen Bereich gereizt wird, erweisen sich die Phasenrotatoren als gute Beschreibung des Spikeverhaltens. Es wird jedoch gezeigt, daß bei einer Stimulierung mit Strömen, die um die Schwelle des Neurons herum fluktuieren, diese Modelle, genauso wie alle anderen eindimensionalen Modelle einschließlich des Intergrate-and-fire Neurons, versagen. Feuerraten Adaptation kann in vielen Neuronen beobachtet werden. Es wird ein allgemeines phänomenologisches Modell für die Feuerrate adaptierender Neurone aus den Eigenschaften verschiedene Ionenströme, die Adaptation verursachen, hergeleitet. Dieses Modell ist durch die Kennlinien und einer Adaptations-Zeitkonstanten vollständig definiert. Mit Hilfe des Modells können die Eigenschaften der Adaptation als Hochpassfilter quantifiziert werden. Weiterhin wird die Rolle der Adaptation bei der Unterdrückung von Hintergrundrauschen diskutiert. Sowohl die Phasenrotatoren als auch das Adaptationsmodell werden an auditorischen Rezeptorzellen der Wanderheuschrecke und dem AN1, ein primäres auditorisches Interneuron der Grille {Teleogryllus oceanicus}, getestet. In beiden Fällen stimmen die Modelle gut mit den experimentelle Daten überein. Es wird mit Hilfe der Modelle gezeigt, daß Adaptation in den Rezeptorzellen durch Ionenströme des Spikegenerators verursacht wird, während in dem Interneuron der Eingang schon adaptatiert. Zusätzlich wird der Einfluß der Feuerraten-Adaptation auf die Gesangserkennung analysiert.
 
The single neuron is the basic element of information processing in nervous systems. In this thesis several properties of the dynamics of the generation of spikes are investigated theoretically as well as experimentally. Phase oscillators of different complexity are introduced as models to predict the timing of spikes. The neuron's intensity-response curve is used as a basic parameter in these models to make them easily applicable to real neurons. As a second important aspect of the spiking dynamics, the neuron's phase-resetting curve is used to extend the models. The phase oscillators turn out to be a good approximation of the spiking behavior of a neuron as long as it is stimulated in its super-threshold regime. However, it is shown by comparison with conductance-based models that these models, as well as all other one-dimensional models including the common integrate-and-fire model, fail, if the neuron is stimulated with currents fluctuating around its threshold. Spike-frequency adaptation is a common feature of many neurons. For various ionic currents, as a possible reason for adaptation, a general phenomenological model for the firing rate of adapting neurons is derived from their biophysical properties. This model is defined by the neuron's intensity-response curves and an adaptation time-constant. By means of this model the high-pass properties of spike-frequency adaptation can be quantified. Also the role of adaptation in supression of background noise is discussed. Both the phase oscillators and the adaptation-model are tested on auditory receptor neurons of locusts and the AN1, a primary auditory interneuron of the cricket {Teleogryllus oceanicus}. In both cases the models are in good agreement with the experimental data. By means of the models it is shown that adaptation in the receptor neurons is caused by ionic currents of the spike generator while in the interneuron it is the input which is already adapting. In addition, the influence of spike-frequency adaptation on the recognition of courtship songs is analysed.
 
Files in this item
Thumbnail
Benda.pdf — Adobe PDF — 4.093 Mb
MD5: 4022fe807c088cd6c414e299cd94e731
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/14684
Permanent URL
https://doi.org/10.18452/14684
HTML
<a href="https://doi.org/10.18452/14684">https://doi.org/10.18452/14684</a>