Show simple item record

2002-02-13Dissertation DOI: 10.18452/14741
Nonparametric estimation for stochastic delay differential equations
dc.contributor.authorReiß, Markus
dc.date.accessioned2017-06-18T04:50:05Z
dc.date.available2017-06-18T04:50:05Z
dc.date.created2002-02-13
dc.date.issued2002-02-13
dc.identifier.urihttp://edoc.hu-berlin.de/18452/15393
dc.description.abstractSei (X(t), t>= -r) ein stationärer stochastischer Prozess, der die affine stochastische Differentialgleichung mit Gedächtnis dX(t)=L(X(t+s))dt+sigma dW(t), t>= 0, löst, wobei sigma>0, (W(t), t>=0) eine Standard-Brownsche Bewegung und L ein stetiges lineares Funktional auf dem Raum der stetigen Funktionen auf [-r,0], dargestellt durch ein endliches signiertes Maß a, bezeichnet. Wir nehmen an, dass eine Trajektorie (X(t), -r 0, konvergiert. Diese Rate ist schlechter als in vielen klassischen Fällen. Wir beweisen jedoch eine untere Schranke, die zeigt, dass keine Schätzung eine bessere Rate im Minimax-Sinn aufweisen kann. Für zeit-diskrete Beobachtungen von maximalem Abstand Delta konvergiert die Galerkin-Schätzung immer noch mit obiger Rate, sofern Delta is in etwa von der Ordnung T^(-1/2). Hingegen wird bewiesen, dass für festes Delta unabhängig von T die Rate sich signifikant verschlechtern muss, indem eine untere Schranke von T^(-s/(2s+6)) gezeigt wird. Außerdem wird eine adaptive Schätzung basierend auf Wavelet-Thresholding-Techniken für das assoziierte schlechtgestellte Problem konstruiert. Diese nichtlineare Schätzung erreicht die obige Minimax-Rate sogar für die allgemeinere Klasse der Besovräume B^s_(p,infinity) mit p>max(6/(2s+3),1). Die Restriktion p>=max(6/(2s+3),1) muss für jede Schätzung gelten und ist damit inhärent mit dem Schätzproblem verknüpft. Schließlich wird ein Hypothesentest mit nichtparametrischer Alternative vorgestellt, der zum Beispiel für das Testen auf Gedächtnis verwendet werden kann. Dieser Test ist anwendbar für eine L^2-Trennungsrate zwischen Hypothese und Alternative der Ordnung T^(-s/(2s+2.5)). Diese Rate ist wiederum beweisbar optimal für jede mögliche Teststatistik. Für die Beweise müssen die Parameterabhängigkeit der stationären Lösungen sowie die Abbildungseigenschaften der assoziierten Kovarianzoperatoren detailliert bestimmt werden. Weitere Resultate von allgemeinem Interessen beziehen sich auf die Mischungseigenschaft der stationären Lösung, eine Fallstudie zu exponentiellen Gewichtsfunktionen sowie der Approximation des stationären Prozesses durch autoregressive Prozesse in diskreter Zeit.ger
dc.description.abstractLet (X(t), t>= -r) be a stationary stochastic process solving the affine stochastic delay differential equation dX(t)=L(X(t+s))dt+sigma dW(t), t>= 0, with sigma>0, (W(t), t>=0) a standard one-dimensional Brownian motion and with a continuous linear functional L on the space of continuous functions on [-r,0], represented by a finite signed measure a. Assume that a trajectory (X(t), -r 0. This rate is worse than those obtained in many classical cases. However, we prove a lower bound, stating that no estimator can attain a better rate of convergence in a minimax sense. For discrete time observations of maximal distance Delta, the Galerkin estimator still attains the above asymptotic rate if Delta is roughly of order T^(-1/2). In contrast, we prove that for observation intervals Delta, with Delta independent of T, the rate must deteriorate significantly by providing the rate estimate T^(-s/(2s+6)) from below. Furthermore, we construct an adaptive estimator by applying wavelet thresholding techniques to the corresponding ill-posed inverse problem. This nonlinear estimator attains the above minimax rate even for more general classes of Besov spaces B^s_(p,infinity) with p>max(6/(2s+3),1). The restriction p >= 6/(2s+3) is shown to hold for any estimator, hence to be inherently associated with the estimation problem. Finally, a hypothesis test with a nonparametric alternative is constructed that could for instance serve to decide whether a trajectory has been generated by a stationary process with or without time delay. The test works for an L^2-separation rate between hypothesis and alternative of order T^(-s/(2s+2.5)). This rate is again shown to be optimal among all conceivable tests. For the proofs, the parameter dependence of the stationary solutions has to be studied in detail and the mapping properties of the associated covariance operators have to be determined exactly. Other results of general interest concern the mixing properties of the stationary solution, a case study for exponential weight functions and the approximation of the stationary process by discrete time autoregressive processes.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectaffine stochastische Differentialgleichungen mit Gedächtnisger
dc.subjectschlechtgestellte inverse Problemeger
dc.subjectMinimax-Ratenger
dc.subjectnichtparametrische Projektionsverfahrenger
dc.subjectaffine stochastic delay differential equationseng
dc.subjectill-posed inverse problemseng
dc.subjectminimax rateseng
dc.subjectnonparametric projection methodseng
dc.subject.ddc510 Mathematik
dc.titleNonparametric estimation for stochastic delay differential equations
dc.typedoctoralThesis
dc.identifier.urnurn:nbn:de:kobv:11-10017162
dc.identifier.doihttp://dx.doi.org/10.18452/14741
dc.date.accepted2002-02-13
dc.contributor.refereePicard, Dominique
dc.contributor.refereeScheutzow, Michael
dc.contributor.refereeKüchler, Uwe
dc.subject.dnb27 Mathematik
dc.subject.rvkSK 8400
local.edoc.pages130
local.edoc.type-nameDissertation
bua.departmentMathematisch-Naturwissenschaftliche Fakultät II

Show simple item record