Show simple item record

2003-06-30Dissertation DOI: 10.18452/14888
Field theory on a non-commutative plane
dc.contributor.authorHofheinz, Frank
dc.date.accessioned2017-06-18T05:19:47Z
dc.date.available2017-06-18T05:19:47Z
dc.date.created2003-06-30
dc.date.issued2003-06-30
dc.identifier.urihttp://edoc.hu-berlin.de/18452/15540
dc.description.abstractQuantenfeldtheorien, die auf Räumen mit nichtkommutierenden Koordinaten definiert sind, finden in den letzten Jahren zunehmend Interesse. Mögliche Anwendungen dieser Modelle gibt es unter anderem in der Stringtheorie, der Phänomenologie der Elementarteilchen und in der Festkörperphysik. In der vorliegenden Arbeit untersuchen wir nichtstörungstheoretisch solche nichtkommutativen Feldtheorien mit Hilfe von Monte-Carlo Simulationen. Wir betrachten eine zweidimensionale reine U(1) Eichfeldtheorie und eine dreidimensionale skalare Feldtheorie. Dazu bilden wir die entsprechenden Gittertheorien auf dimensional reduzierte Modelle ab, die mittels N x N Matrizen formuliert sind. Die 2d Eichtheorie auf dem Gitter ist äquivalent zum twisted Eguchi-Kawai Modell, das wir für N=25 bis 515 simulierten. Wir beobachteten ein deutliches Skalierungsverhalten der Ein- und Zweipunktfunktionen von Wilson-Schleifen sowie von Zweipunktfunktionen von Polyakov-Linien bei großen N. Die Zweipunktfunktionen stimmen mit einer universellen Wellenfunktionsrenormierung überein. Der Doppel-Skalierungslimes bei N gegen unendlich entspricht dem Kontinuumslimes in der nichtkommutativen Gittereichtheorie. Das beobachtete Skalierungsverhalten bei großen N zeigt die nichtstörungstheoretische Renormierbarkeit dieser nichtkommutativen Feldtheorie. Für kleine Flächen gilt das Flächengesetz der Wilson-Schleifen wie in der kommutativen 2d planaren Eichtheorie. Für große Flächen finden wir jedoch stattdessen ein oszillierendes Verhalten. In diesem Bereich wächst die Phase der Wilson-Schleifen linear mit der Fläche. Identifiziert man den Nichtkommutativitätsparameter mit einem inversen Magnetfeld, entspricht dies dem Aharonov-Bohm-Effekt. Als nächstes untersuchen wir das 3d lambda phi^4 Modell mit zwei nichtkommutierenden Dimensionen. Wir analysieren das Phasendiagramm. Unsere Ergebnisse stimmen mit einer Vermutung von Gubser und Sondhi in vier Dimensionen überein. Sie sagen vorher, daß sich der geordnete Bereich in eine uniforme und eine nichtuniforme Phase aufspaltet. Desweiteren zeigen wir Ergebnisse für Korrelatoren und der Dispersionsrelation. In der nichtkommutativen Feldtheorie ist die Lorentz-Symmetrie explizit gebrochen, was zu einer deformierten Dispersionsrelation führt. In der Ein-Schleifen Störungstheorie ergibt sich ein zusätzlicher infrarot divergenter Term. Unsere Daten bestätigen dieses störungstheoretische Ergebnis. Wir bestätigen ebenso eine Beobachtung von Ambjorn und Catterall, daß eine nichtuniforme Phase auch in zwei Dimensionen existiert, obwohl dies eine spontane Brechung der Translationssymmetrie impliziert.ger
dc.description.abstractIn the recent years there is a surge of interest in quantum field theories on spaces with non-commutative coordinates. The potential applications of such models include string theory, particle phenomenology as well as solid state physics. We perform a non-perturbative study of such non-commutative field theories by the means of Monte Carlo simulations. In particular we consider a two dimensional pure U(1) gauge field theory and a three dimensional scalar field theory. To this end we map the corresponding lattice theories on dimensionally reduced models, which are formulated in terms of N x N matrices. The 2d gauge theory on the lattice is equivalent to the twisted Eguchi-Kawai model, which we simulated at N ranging from 25 to 515. We observe a clear large N scaling for the 1- and 2-point function of Wilson loops, as well as the 2-point function of Polyakov lines. The 2-point functions agree with a universal wave function renormalization. The large N double scaling limit corresponds to the continuum limit of non-commutative gauge theory, so the observed large N scaling demonstrates the non-perturbative renormalizability of this non-commutative field theory. The area law for the Wilson loops holds at small physical area as in commutative 2d planar gauge theory, but at large areas we find an oscillating behavior instead. In that regime the phase of the Wilson loop grows linearly with the area. This agrees with the Aharonov-Bohm effect in the presence of a constant magnetic field, identified with the inverse non-commutativity parameter. Next we investigate the 3d lambda phi^4 model with two non-commutative coordinates and explore its phase diagram. Our results agree with a conjecture by Gubser and Sondhi in d=4, who predicted that the ordered regime splits into a uniform phase and a phase dominated by stripe patterns. We further present results for the correlators and the dispersion relation. In non-commutative field theory the Lorentz invariance is explicitly broken, which leads to a deformation of the dispersion relation. In one loop perturbation theory this deformation involves an additional infrared divergent term. Our data agree with this perturbative result. We also confirm the recent observation by Ambjorn and Catterall that stripes occur even in d=2, although they imply the spontaneous breaking of the translation symmetry.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectGittereichtheorieger
dc.subjectNichtkommutative Geometrieger
dc.subjectMatrixmodelleger
dc.subjectFeldtheorie in niedrigen Dimensionenger
dc.subjectNon-Commutative Geometryeng
dc.subject.ddc530 Physik
dc.titleField theory on a non-commutative plane
dc.typedoctoralThesis
dc.subtitlea non-perturbative study of 2d gauge theory and 3d scalar theory based on dimensional reduction
dc.identifier.urnurn:nbn:de:kobv:11-10019348
dc.identifier.doihttp://dx.doi.org/10.18452/14888
dc.contributor.refereeLüst, D.
dc.contributor.refereeAmbjörn, J.
dc.contributor.refereeMüller-Preußker, M.
dc.subject.dnb29 Physik, Astronomie
dc.subject.rvkUO 4060
local.edoc.type-nameDissertation
local.edoc.institutionMathematisch-Naturwissenschaftliche Fakultät I

Show simple item record