Show simple item record

2007-02-16Dissertation DOI: 10.18452/15595
Numerical treatment of the Black-Scholes variational inequality in computational finance
dc.contributor.authorMautner, Karin
dc.date.accessioned2017-06-18T08:06:27Z
dc.date.available2017-06-18T08:06:27Z
dc.date.created2007-03-12
dc.date.issued2007-02-16
dc.identifier.urihttp://edoc.hu-berlin.de/18452/16247
dc.description.abstractIn der Finanzmathematik hat der Besitzer einer amerikanische Option das Recht aber nicht die Pflicht, eine Aktie innerhalb eines bestimmten Zeitraums, für einen bestimmten Preis zu kaufen oder zu verkaufen. Die Bewertung einer amerikanische Option wird als so genanntes optimale stopping Problem formuliert. Erfolgt die Modellierung des Aktienkurses durch eine geometrische Brownsche Bewegung, wird der Wert einer amerikanischen Option durch ein deterministisches freies Randwertproblem (FRWP), oder einer äquivalenten Variationsungleichung (VU) auf ganz R in gewichteten Sobolev Räumen gegeben. Um Standardmethoden der Numerischen Mathematik anzuwenden, wird das unbeschränkte Gebiet zu einem beschränkten Gebiet abgeschnitten. Mit Hilfe der Fourier-Transformation wird eine Integraldarstellung der Lösung die den freien Rand explizit beinhaltet, hergeleitet. Mittels dieser Integraldarstellung werden Abschneidefehlerschranken bewiesen. Danach werden gewichtete Poincare Ungleichungen mit expliziten Konstanten bewiesen. Der Abschneidefehler und die gewichtete Poincare Ungleichung ermöglichen, einen zuverlässigen a posteriori Fehlerschätzer zwischen der exakten Lösung der VU und der semidiskreten Lösung des penalisierten Problems auf R herzuleiten. Eine hinreichend glatte Lösung der VU garantiert die Konvergenz der Lösung des penaltisierten Problems zur Lösung der VU. Ein a priori Fehlerschätzer für den Fehler zwischen der exakten Lösung der VU und der semidiskreten Lösung des penaltisierten Problems beendet die numerische Analysis. Die eingeführten aposteriori Fehlerschätzer motivieren einen Algorithmus für adaptive Netzverfeinerung. Numerische Experimente zeigen die verbesserte Konvergenz des adaptiven Verfahrens gegenüber der uniformen Verfeinerung. Der zuverlässige a posteriori Fehlerschätzer ermöglicht es, den Abschneidepunkt so zu wählen, dass der Gesamtfehler (Diskretisierungsfehler plus Abschneidefehler) kleiner als eine gegebenen Toleranz ist.ger
dc.description.abstractAmong the central concerns in mathematical finance is the evaluation of American options. An American option gives the holder the right but not the obligation to buy or sell a certain financial asset within a certain time-frame, for a certain strike price. The valuation of American options is formulated as an optimal stopping problem. If the stock price is modelled by a geometric Brownian motion, the value of an American option is given by a deterministic parabolic free boundary value problem (FBVP) or equivalently a non-symmetric variational inequality (VI) on weighted Sobolev spaces on R. To apply standard numerical methods, the unbounded domain R is truncated to a bounded one. Applying the Fourier transform to the FBVP yields an integral representation of the solution including the free boundary explicitely. This integral representation allows to prove explicit truncation errors. Since the VI is formulated within the framework of weighted Sobolev spaces, we establish a weighted Poincare inequality with explicit determined constants. The truncation error estimate and the weighted Poncare inequality enable a reliable a posteriori error estimate between the exact solution of the VI and the semi-discrete solution of the penalised problem on R. A sufficient regular solution provides the convergence of the solution of the penalised problem to the solution of the VI. An a priori error estimate for the error between the exact solution of the VI and the semi-discrete solution of the penalised problem concludes the numerical analysis. The established a posteriori error estimates motivates an algorithm for adaptive mesh refinement. Numerical experiments show the improved convergence of the adaptive algorithm compared to uniform mesh refinement. The reliable a posteriori error estimate including explicit truncation errors allows to determine a truncation point such that the total error (discretisation and truncation error) is below a given error tolerance.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectAmerikanische Optionenger
dc.subjectVariationsungleichungger
dc.subjectFinite Element Diskretisierungger
dc.subjectFehleranalysisger
dc.subjectAmerican optionseng
dc.subjectvariational inequalityeng
dc.subjectfinite element discretisationeng
dc.subjecterror analysiseng
dc.subject.ddc510 Mathematik
dc.titleNumerical treatment of the Black-Scholes variational inequality in computational finance
dc.typedoctoralThesis
dc.identifier.urnurn:nbn:de:kobv:11-10075837
dc.identifier.doihttp://dx.doi.org/10.18452/15595
dc.identifier.alephidHU002246624
dc.date.accepted2006-12-15
dc.contributor.refereeCarstensen, Carsten
dc.contributor.refereeBrokate, Martin
dc.contributor.refereeKornhuber, Ralf
dc.subject.dnb27 Mathematik
local.edoc.type-nameDissertation
local.edoc.institutionMathematisch-Naturwissenschaftliche Fakultät II

Show simple item record