Zur Kurzanzeige

2007-07-25Dissertation DOI: 10.18452/15639
Structural and catalytic investigations on vanadium oxide nanoparticles supported on silica films grown an a Mo(112) substrate
dc.contributor.authorKaya, Sarp
dc.date.accessioned2017-06-18T08:16:09Z
dc.date.available2017-06-18T08:16:09Z
dc.date.created2007-07-31
dc.date.issued2007-07-25
dc.identifier.urihttp://edoc.hu-berlin.de/18452/16291
dc.description.abstractDie breite Anwendung von Modellsystemen, um heterogene katalytische Prozesse zu verstehen, basiert darauf, die Lücke der strukturellen Komplexität zu überbrücken zwischen heutigen technischen Katalysatoren, bestehend aus einem Metalloxid sowie einem darauf geträgerten Metall, sowie kristallinen Metallen und planaren Metall/Oxid-Systemen, welche dazu benutzt werden, Struktur-Reaktivitäts-Beziehungen mittels einer Fülle von Surface Science-Methoden zu untersuchen. In der vorliegenden Arbeit liegt das Hauptaugenmerk auf so genannten Vanadiumoxid-‚Monolagen’-Katalysatoren, die insbesondere für Oxidationsreaktionen von Methanol eingeführt wurden. Mittels eines ‚bottom-up’-Ansatzes wurden Silica-geträgerte Vanadiumoxid-Modellkatalysatoren untersucht. Durch Kombination einer Reihe experimenteller Techniken wurde die Oberfläche von Mo(112), die als Substrat für den Silica-Film diente, im Detail untersucht und die atomare Struktur des Silica-Films wurde ermittelt. Adsorption von Wasser und das Wachstum von Vanadiumoxid-Nanopartikeln auf dem Silica-Film und schließlich die Reaktivität von Vanadiumoxid/Silica-Systemen gegenüber Methanol wurden untersucht. Im Gegensatz zu früher vorgeschlagenen Modellen sollte eine Sauerstoff-induzierte p(2×3)-Überstruktur, die sich auf einer Mo(112)-Oberfläche ausbilded, angenommen werden als ein eindimensionales Oberflächenoxid, bei dem sich Mo=O-Gruppen bevorzugt entlang der [-1-11]-Richtung der Mo(112)-Oberfläche ausbilden. Monolagen-Silica-Filme, die auf Mo(112) gewachsen wurden, bestehen aus einem zweidimensionalen Netz von SiO4-Tetraedern. In Abhängigkeit der Bedingungen, unter denen der Film präpariert wurde, kann die Struktur durch zusätzlich auf dem Mo-Substrat adsorbierte Sauerstoff-Atome verändert werden. Die Defekt-Struktur schließt Antiphasen-Domänengrenzen ein, die durch eine Verschiebung um die halbe Gitterkonstante entlang der [-110]-Richtung gebildet werden, und eine geringe Dichte von Punkt-Defekten, die höchstwahrscheinlich Silizium-Fehlstellen darstellen. Wasser dissoziiert nicht auf dem Monolagen-Silica-Film. Eine Wasser-Struktur, die geordnet bezüglich des Silica-Films ist, wurde bei 140 K beobachtet, was der guten Übereinstimmung der Gitterkonstanten von Silica-Film und hexagonalem Eis geschuldet ist. Amorphe Lagen festen Wassers, die die Oberfläche bei 100 K homogen bedecken, wurden als reaktive Lagen für Vanadiumoxid-Partikel benutzt, um die ‚Nasschemie’ nachzubilden, wie sie in der Präparation technischer Katalysatoren zum Einsatz kommt. Die Ergebnisse verdeutlichen, dass die Eis-Lagen die Bildung von hydratisierten Vanadiumoxid-Nanopartikeln, welche teilweise von V=O und V-OH-Gruppen terminiert werden, begünstigen. Die Dehydratisierung geschieht oberhalb 500 K, wobei eine V-terminierte Oberfläche entsteht. Methanol dissoziiert auf dehydratisierten Vanadiumoxid-Partikeln, und Methoxy-Spezies sind auf der Oberfläche stabil bis 500 K, allerdings nur in der Gegenwart von V-Plätzen. Die Produktion von Formaldehyd, die bei etwa 550 K stattfindet, ist stark abhängig von der Struktur der Oberfläche der Vanadiumoxid-Partikel und weist ein Maximum bei einem spezifischen Verhältnis zwischen V- und V=O-Oberflächenplätzen auf. Die hier vorgestellten Ergebnisse könnten unser Verständnis von katalytischen Reaktionen auf molekularer Ebene bedeutend vorantreiben.ger
dc.description.abstractThe widespread use of model systems for understanding the heterogeneous catalytic processes is based on bridging the structural complexity gap between present generation of supported metal and metal oxide technical catalysts and crystalline metal and planar metal/oxide systems, which are utilized to investigate structure-reactivity relationships by a large variety of surface science techniques. In this thesis, we focused on a concept of so-called ''monolayer'' vanadium oxide catalysts, which have been introduced particularly for methanol oxidation reactions. Following a bottom-up approach, silica supported vanadium oxide model catalysts were investigated. Combining a number of experimental techniques, the surface of Mo(112) used as a substrate for the silica films was characterized in detail and the atomic structure of the silica film was determined. Adsorption of water and growth of vanadium oxide nanoparticles on the silica films, and finally the reactivity of vanadium oxide/silica systems towards methanol were studied. In contrast to the previously suggested models, an oxygen induced p(2×3) superstructure formed on a Mo(112) surface should be considered as one dimensional surface oxide where Mo=O groups are formed preferentially along the [-1-11] direction of the Mo(112) surface. Monolayer silica films grown on Mo(112) surfaces are composed of two-dimensional network of SiO4 tetrahedra. Depending on the film preparation conditions, the structure can be altered by additional oxygen atoms adsorbed on the Mo substrate. The defect structure includes antiphase domain boundaries which form by a half-lattice shift along the [-110] direction and a low density of point defects, most probably silicon vacancies. Water does not dissociate on the monolayer silica film. An ordered structure of water with respect to silica film was observed at 140 K owing to good lattice matching between the silica film and hexagonal ice. Amorphous solid water layers homogenously covering the surface at 100 K were used as reactive layers for vanadium oxide particles in order to mimic ''wet chemistry'' used in preparation of technical catalysts. The results revealed that ice layer assisted the formation of hydrated vanadium oxide nanoparticles partially terminated by V=O and V-OH groups. The dehydration takes place above 500 K, thus exposing V-terminated surface. Methanol dissociates on dehydrated vanadium oxide particles and methoxy species are stable on the surface up to 500 K only in the presence of vanadium terminated surface sites. Formaldehyde production which takes place at ~550 K is strongly affected by the surface structure of the vanadium oxide particles and exhibits a maximum at specific ratio between V- and V=O sites on the surface. The results presented may have a strong impact on our understanding of the catalytic reactions at the molecular level.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectDünne filmeger
dc.subjectkatalyseger
dc.subjectoberflächenwissenschaftger
dc.subjectsiliziumdioxidger
dc.subjectvanadiumoxidger
dc.subjecteisger
dc.subjectmethanol.ger
dc.subjectThin filmseng
dc.subjectcatalysiseng
dc.subjectsurface scienceeng
dc.subjectsilicon dioxideeng
dc.subjectvanadium oxideeng
dc.subjecticeeng
dc.subjectmethanol.eng
dc.subject.ddc540 Chemie und zugeordnete Wissenschaften
dc.titleStructural and catalytic investigations on vanadium oxide nanoparticles supported on silica films grown an a Mo(112) substrate
dc.typedoctoralThesis
dc.identifier.urnurn:nbn:de:kobv:11-10078859
dc.identifier.doihttp://dx.doi.org/10.18452/15639
dc.identifier.alephidHU002430717
dc.date.accepted2007-07-13
dc.contributor.refereeFreund, H.-J.
dc.contributor.refereeRademann, K.
dc.subject.dnb30 Chemie
local.edoc.type-nameDissertation
bua.departmentMathematisch-Naturwissenschaftliche Fakultät I

Zur Kurzanzeige