Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2007-09-04Dissertation DOI: 10.18452/15678
Grenzflächenuntersuchungen am Tunnelkontakt einer MOCVD-präparierten Tandemsolarzelle
Seidel, Ulf
Mathematisch-Naturwissenschaftliche Fakultät I
In dieser Arbeit wurde eine Tandemsolarzelle aus III-V-Halbleitern auf der Gitterkonstanten von InP mit einem neuartigen Tunnelkontakt entwickelt. Für die Entwicklung der monolithischen Präparation wurden insbesondere kritische Hetero-Grenzflächen im Bereich des Tunnelkontaktes mit oberflächensensitiven Messmethoden untersucht. Die Tandemsolarzelle bestand aus Einzelsolarzellen mit Absorberschichten aus InGaAs (E_g=0,73eV) und InGaAsP (E_g=1,03eV), deren Serienverschaltung mit einem Tunnelkontakt erfolgte, der aus einer n-InGaAs- und einer p-GaAsSb-Schicht bestand. Die Halbleiterschichten wurden mit metallorganischer Gasphasenepitaxie (MOCVD) einkristallin auf einem InP(100)-Substrat gitterangepasst präpariert. Insbesondere wurde der Einfluss der Präparation von InGaAs-Oberflächen auf die Schärfe der InGaAs/GaAsSb-Grenzfläche in-situ mit RAS und nach einem kontaminationsfreien Transfer ins UHV mit UPS, XPS und LEED untersucht. Dabei konnten erstmals drei verschiedene Rekonstruktionen der MOCVD-präparierten InGaAs-Oberfläche beobachtet werden, die von der Heiztemperatur abhängig waren: eine As-reiche (4x3)-, eine InGa-reiche (2x4)- und eine ebenfalls InGa-reiche (4x2)/c(8x2)-Rekonstruktion. Danach erfolgte die Untersuchung des Wachstums von dünnen GaAsSb-Schichten auf diesen drei InGaAs-Oberflächen. Anhand des Sb/As-Verhältnisses im GaAsSb konnte die Präparation auf der (4x3)-rekonstruierten Oberfläche als die schlechteste beurteilt werden. Abschließend wurden Tandemsolarzellen mit verschieden dicken Absorberschichten der InGaAsP-Topzelle gefertigt. Der höchste Wirkungsgrad einer hier hergestellten Tandemsolarzelle betrug 7,3% unter einem gefilterten Sonnenspektrum, das eine GaAs-basierte Tandemsolarzelle mit großen Bandlücken (E_g>1,4eV) simulierte. Die Kombination einer solchen Tandemsolarzelle mit der hier entwickelten InGaAs/InGaAsP-Tandemsolarzelle hat das Potential, für konzentriertes Sonnenlicht eine Konversionseffizienz von deutlich über 40% zu erreichen.
 
A monolithic low band gap tandem solar cell made up of III-V semiconductors lattice matched to InP and including a novel tunnel junction was developed. Critical hetero interfaces were investigated in detail, in particular the ones related to the tunnel diode. The tandem solar cell was composed of single junction cells with InGaAs (E_g=0.73eV) and InGaAsP (E_g=1.03eV) absorber layers. The serial connection of the subcells was realized by using a tunnel junction including n-InGaAs and p-GaAsSb layers. Metal organic vapor phase epitaxy (MOVPE) was used to prepare the III-V layers lattice matched on InP(100) substrates. In particular, the influence of the preparation of the InGaAs surface on the sharpness of the InGaAs/GaAsSb interface was investigated in-situ by Reflection Anisotropy Spectroscopy (RAS). After a contamination free transfer to UHV the samples were analyzed by UPS, XPS and LEED. Three different surface reconstructions of MOVPE-prepared InGaAs were determined for the first time: an As-rich (4x3)-, an InGa-rich (2x4) and an also InGa-rich (4x2)/c(8x2)-reconstructed surface. In a second step, the growth of thin GaAsSb layers on the three different InGaAs surfaces was studied. The Sb/As-ratio in the GaAsSb layer indicated that the preparations on the InGa-rich surfaces result in a sharper interface. Finally, tandem solar cells with different thicknesses for the absorber layer of the top cell were produced. The highest efficiency obtained for the tandem solar cell was 7.3%, when measured under a filtered solar spectrum to simulate the operation below a GaAs-based tandem solar cell (E_g>1.4eV). The combination of a high band gap tandem solar cell with the InGaAs/InGaAsP tandem solar cell developed here is estimated to reach under a concentrated solar spectrum a total efficiency of more than 40% after further optimization steps.
 
Files in this item
Thumbnail
seidel.pdf — Adobe PDF — 4.869 Mb
MD5: ca21e2d066b1139e0174065020cb68ed
Notes
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/15678
Permanent URL
https://doi.org/10.18452/15678
HTML
<a href="https://doi.org/10.18452/15678">https://doi.org/10.18452/15678</a>