Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2008-07-11Dissertation DOI: 10.18452/15802
Dynamic semiparametric factor models
Borak, Szymon
Wirtschaftswissenschaftliche Fakultät
Hochdimensionale Regressionsprobleme, die sich dynamisch entwickeln, sind in zahlreichen Bereichen der Wissenschaft anzutreffen. Die Dynamik eines solchen komplexen Systems wird typischerweise mittels der Zeitreiheneigenschaften einer geringen Anzahl von Faktoren analysiert. Diese Faktoren wiederum sind mit zeitinvarianten Funktionen von explikativen Variablen bewichtet. Diese Doktorarbeit beschäftigt sich mit einem dynamischen semiparametrischen Faktormodell, dass nichtparametrische Bewichtungsfunktionen benutzt. Zu Beginn sollen kurz die wichtigsten statistischen Methoden diskutiert werden um dann auf die Eigenschaften des verwendeten Modells einzugehen. Im Anschluss folgt die Diskussion einiger Anwendungen des Modellrahmens auf verschiedene Datensätze. Besondere Aufmerksamkeit wird auf die Dynamik der so genannten Implizierten Volatilität und das daraus resultierende Faktor-Hedging von Barrier Optionen gerichtet.
 
High-dimensional regression problems which reveal dynamic behavior occur frequently in many different fields of science. The dynamics of the whole complex system is typically analyzed by time propagation of few number of factors, which are loaded with time invariant functions of exploratory variables. In this thesis we consider dynamic semiparametric factor model, which assumes nonparametric loading functions. We start with a short discussion of related statistical techniques and present the properties of the model. Additionally real data applications are discussed with particular focus on implied volatility dynamics and resulting factor hedging of barrier options.
 
Files in this item
Thumbnail
borak.pdf — Adobe PDF — 4.381 Mb
MD5: 3dbf4207eac6330a295ef451f6aacc96
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/15802
Permanent URL
https://doi.org/10.18452/15802
HTML
<a href="https://doi.org/10.18452/15802">https://doi.org/10.18452/15802</a>