Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2009-12-02Dissertation DOI: 10.18452/16033
Knowledge management and discovery for genotype/phenotype data
Groth, Philip
Mathematisch-Naturwissenschaftliche Fakultät II
Die Untersuchung des Phänotyps bringt z.B. bei genetischen Krankheiten ein Verständnis der zugrunde liegenden Mechanismen mit sich. Aufgrund dessen wurden neue Technologien wie RNA-Interferenz (RNAi) entwickelt, die Genfunktionen entschlüsseln und mehr phänotypische Daten erzeugen. Interpretation der Ergebnisse solcher Versuche ist insbesondere bei heterogenen Daten eine große Herausforderung. Wenige Ansätze haben bisher Daten über die direkte Verknüpfung von Genotyp und Phänotyp hinaus interpretiert. Diese Dissertation zeigt neue Methoden, die Entdeckungen in Phänotypen über Spezies und Methodik hinweg ermöglichen. Es erfolgt eine Erfassung der verfügbaren Datenbanken und der Ansätze zur Analyse ihres Inhalts. Die Grenzen und Hürden, die noch bewältigt werden müssen, z.B. fehlende Datenintegration, lückenhafte Ontologien und der Mangel an Methoden zur Datenanalyse, werden diskutiert. Der Ansatz zur Integration von Genotyp- und Phänotypdaten, PhenomicDB 2, wird präsentiert. Diese Datenbank assoziiert Gene mit Phänotypen durch Orthologie über Spezies hinweg. Im Fokus sind die Integration von RNAi-Daten und die Einbindung von Ontologien für Phänotypen, Experimentiermethoden und Zelllinien. Ferner wird eine Studie präsentiert, in der Phänotypendaten aus PhenomicDB genutzt werden, um Genfunktionen vorherzusagen. Dazu werden Gene aufgrund ihrer Phänotypen mit Textclustering gruppiert. Die Gruppen zeigen hohe biologische Kohärenz, da sich viele gemeinsame Annotationen aus der Gen-Ontologie und viele Protein-Protein-Interaktionen innerhalb der Gruppen finden, was zur Vorhersage von Genfunktionen durch Übertragung von Annotationen von gut annotierten Genen zu Genen mit weniger Annotationen genutzt wird. Zuletzt wird der Prototyp PhenoMIX präsentiert, in dem Genotypen und Phänotypen mit geclusterten Phänotypen, PPi, Orthologien und weiteren Ähnlichkeitsmaßen integriert und deren Gruppierungen zur Vorhersage von Genfunktionen, sowie von phänotypischen Wörtern genutzt.
 
In diseases with a genetic component, examination of the phenotype can aid understanding the underlying genetics. Technologies to generate high-throughput phenotypes, such as RNA interference (RNAi), have been developed to decipher functions for genes. This large-scale characterization of genes strongly increases phenotypic information. It is a challenge to interpret results of such functional screens, especially with heterogeneous data sets. Thus, there have been only few efforts to make use of phenotype data beyond the single genotype-phenotype relationship. Here, methods are presented for knowledge discovery in phenotypes across species and screening methods. The available databases and various approaches to analyzing their content are reviewed, including a discussion of hurdles to be overcome, e.g. lack of data integration, inadequate ontologies and shortage of analytical tools. PhenomicDB 2 is an approach to integrate genotype and phenotype data on a large scale, using orthologies for cross-species phenotypes. The focus lies on the uptake of quantitative and descriptive RNAi data and ontologies of phenotypes, assays and cell-lines. Then, the results of a study are presented in which the large set of phenotype data from PhenomicDB is taken to predict gene annotations. Text clustering is utilized to group genes based on their phenotype descriptions. It is shown that these clusters correlate well with indicators for biological coherence in gene groups, such as functional annotations from the Gene Ontology (GO) and protein-protein interactions. The clusters are then used to predict gene function by carrying over annotations from well-annotated genes to less well-characterized genes. Finally, the prototype PhenoMIX is presented, integrating genotype and phenotype data with clustered phenotypes, orthologies, interaction data and other similarity measures. Data grouped by these measures are evaluated for theirnpredictiveness in gene functions and phenotype terms.
 
Files in this item
Thumbnail
groth.pdf — Adobe PDF — 10.37 Mb
MD5: 4769ac46f44676320a1dad1e44ca605c
Cite
BibTeX
EndNote
RIS
Namensnennung - Keine kommerzielle Nutzung - Weitergabe unter gleichen BedingungenNamensnennung - Keine kommerzielle Nutzung - Weitergabe unter gleichen BedingungenNamensnennung - Keine kommerzielle Nutzung - Weitergabe unter gleichen BedingungenNamensnennung - Keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/16033
Permanent URL
https://doi.org/10.18452/16033
HTML
<a href="https://doi.org/10.18452/16033">https://doi.org/10.18452/16033</a>