Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2010-10-04Dissertation DOI: 10.18452/16213
Range-based parameter estimation in diffusion models
statistical concepts and analytical foundations
Henkel, Hartmuth
Mathematisch-Naturwissenschaftliche Fakultät II
Wir studieren das Verhalten des Maximums, des Minimums und des Endwerts zeithomogener eindimensionaler Diffusionen auf endlichen Zeitintervallen. Zuerst beweisen wir mit Hilfe des Malliavin-Kalküls ein Existenzresultat für die gemeinsamen Dichten. Außerdem leiten wir Entwicklungen der gemeinsamen Momente des Tripels (H,L,X) zur Zeit Delta bzgl. Delta her. Dabei steht X für die zugrundeliegende Diffusion, und H und L bezeichnen ihr fortlaufendes Maximum bzw. Minimum. Ein erster Ansatz, der vollständig auf den elementaren Abschätzungen der Doob’schen und der Cauchy-Schwarz’schen Ungleichung beruht, liefert eine Entwicklung bis zur Ordnung 2 bzgl. der Wurzel der Zeitvariablen Delta. Ein komplexerer Ansatz benutzt Partielle-Differentialgleichungstechniken, um eine Entwicklung der einseitigen Austrittswahrscheinlichkeit für gepinnte Diffusionen zu bestimmen. Da eine Entwicklung der Übergangsdichten von Diffusionen bekannt ist, erhält man eine vollständige Entwicklung der gemeinsamen Wahrscheinlichkeit von (H,X) bzgl. Delta. Die entwickelten Verteilungseigenschaften erlauben es uns, eine Theorie für Martingalschätzfunktionen, die aus wertebereich-basierten Daten konstruiert werden, in einem parameterisierten Diffusionsmodell, herzuleiten. Ein Small-Delta-Optimalitätsansatz, der die approximierten Momente benutzt, liefert eine Vereinfachung der vergleichsweise komplizierten Schätzprozedur und wir erhalten asymptotische Optimalitätsresultate für gegen 0 gehende Sampling-Frequenz. Beim Schätzen des Drift-Koeffizienten ist der wertebereich-basierte Ansatz der Methode, die auf equidistanten Beobachtungen der Diffusion beruht, nicht überlegen. Der Effizienzgewinn im Fall des Schätzens des Diffusionskoeffizienten ist hingegen enorm. Die Maxima und Minima in die Analyse miteinzubeziehen senkt die Varianz des Schätzers für den Parameter in diesem Szenario erheblich.
 
We study the behavior of the maximum, the minimum and the terminal value of time-homogeneous one-dimensional diffusions on finite time intervals. To begin with, we prove an existence result for the joint density by means of Malliavin calculus. Moreover, we derive expansions for the joint moments of the triplet (H,L,X) at time Delta w.r.t. Delta. Here, X stands for the underlying diffusion whereas H and L denote its running maximum and its running minimum, respectively. In a first approach that entirely relies on elementary estimates, such as Doob’s inequality and Cauchy-Schwarz’ inequality, we derive an expansion w.r.t. the square root of the time parameter Delta including powers of 2. A more sophisticated ansatz uses partial differential equation techniques to determine an expansion of the one-barrier hitting time probability for pinned diffusions. For an expansion of the transition density of diffusions is known, one obtains an overall expansion of the joint probability of (H,X) w.r.t. Delta. The developed distributional properties enable us to establish a theory for martingale estimating functions constructed from range-based data in a parameterized diffusion model. A small-Delta-optimality approach, that uses the approximated moments, yields a simplification of the relatively complicated estimating procedure and we obtain asymptotic optimality results when the sampling frequency Delta tends to 0. When it comes to estimating the drift coefficient the range-based method is not superior to the method relying on equidistant observations of the underlying diffusion alone. However, there is an enormous gain in efficiency at the estimation for the diffusion coefficient. Incorporating the maximum and the minimum into the analysis significantly lowers the asymptotic variance of the estimators for the parameter in this scenario.
 
Files in this item
Thumbnail
henkel.pdf — Adobe PDF — 1.958 Mb
MD5: e14a96bc75f5acbe9e7071a78209db01
Cite
BibTeX
EndNote
RIS
Namensnennung - Keine kommerzielle Nutzung - Keine BearbeitungNamensnennung - Keine kommerzielle Nutzung - Keine BearbeitungNamensnennung - Keine kommerzielle Nutzung - Keine BearbeitungNamensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/16213
Permanent URL
https://doi.org/10.18452/16213
HTML
<a href="https://doi.org/10.18452/16213">https://doi.org/10.18452/16213</a>