Efficient query answering in peer data management systems
Mathematisch-Naturwissenschaftliche Fakultät II
Peer-Daten-Management-Systeme (PDMS) bestehen aus einer hochdynamischen Menge heterogener, autonomer Peers. Die Peers beantworten Anfragen einerseits gegen lokal gespeicherte Daten und reichen sie andererseits nach einer Umschreibung anhand von Schema-Mappings an benachbarte Peers weiter. Solche aufgrund fehlender zentraler Komponenten eigentlich hoch- flexiblen Systeme leiden bei zunehmender Anzahl von Peers unter erheblichen Effi- zienzproblemen. Die Gründe hierfür liegen in der massiven Redundanz der Pfade im Netzwerk der Peers und im Informationsverlust aufgrund von Projektionen entlang von Mapping-Pfaden. Anwender akzeptieren in hochskalierten Umgebungen zum Datenaustausch in vielen Anwendungsszenarien Konzessionen an die Vollständigkeit der Anfrageergebnisse. Unser Ansatz sieht in der Vollständigkeit ein Optimierungsziel und verfolgt einen Kompromiß zwischen Nutzen und Kosten der Anfragebearbeitung. Hierzu schlagen wir mehrere Strategien für Peers vor, um zu entscheiden, an welche Nachbar-Peers Anfragen weitergeleitet werden. Peers schließen dabei Mappings von der Anfragebearbeitung aus, von denen sie ein geringes Verhältnis von Ergebnisgröße zu Kosten, also geringe Effizienz erwarten. Als Basis dieser Schätzungen wenden wir selbstadaptive Histogramme über die Ergebniskardinalität an und weisen nach, daß diese in dieser hochdynamischen Umgebung ausreichende Genauigkeit aufweisen. Wir schlagen einen Kompromiß zwischen der Nutzung von Anfrageergebnissen zur Anpassung dieser Metadaten-Statistiken und der Beschneidung von Anfrageplänen vor, um den entsprechenden Zielkonflikt aufzulösen. Für eine Optimierungsstrategie, die das für die Anfragebearbeitung verwendete Zeit-Budget limitiert, untersuchen wir mehrere Varianten hinsichtlich des Effizienzsteigerungspotentials. Darüber hinaus nutzen wir mehrdimensionale Histogramme über die Überlappung zweier Datenquellen zur gezielten Verminderung der Redundanz in der Anfragebearbeitung. Peer data management systems (PDMS) consist of a highly dynamic set of autonomous, heterogeneous peers connected with schema mappings. Queries submitted at a peer are answered with data residing at that peer and by passing the queries to neighboring peers. PDMS are the most general architecture for distributed integrated information systems. With no need for central coordination, PDMS are highly flexible. However, due to the typical massive redundancy in mapping paths, PDMS tend to be very inefficient in computing the complete query result as the number of peers increases. Additionally, information loss is cumulated along mapping paths due to selections and projections in the mappings. Users usually accept concessions on the completeness of query answers in large-scale data sharing settings. Our approach turns completeness into an optimization goal and thus trades off benefit and cost of query answering. To this end, we propose several strategies that guide peers in their decision to which neighbors rewritten queries should be sent. In effect, the peers prune mappings that are expected to contribute few data. We propose a query optimization strategy that limits resource consumption and show that it can drastically increase efficiency while still yielding satisfying completeness of the query result. To estimate the potential data contribution of mappings, we adopted self-tuning histograms for cardinality estimation. We developed techniques that ensure sufficient query feedback to adapt these statistics to massive changes in a PDMS. Additionally, histograms can serve to maintain statistics on data overlap between alternative mapping paths. Building on them, redundant query processing is reduced by avoiding overlapping areas of the multi-dimensional data space.
Files in this item