Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2012-05-07Dissertation DOI: 10.18452/16514
Structured higher-order algorithmic differentiation in the forward and reverse mode with application in optimum experimental design
Walter, Sebastian
Mathematisch-Naturwissenschaftliche Fakultät II
In dieser Arbeit werden Techniken beschrieben, die es erlauben (höhere) Ableitungen und Taylorapproximationen solcher Computerprogramme effizient zu berechnen. Auch inbesondere dann, wenn die Programme Algorithmen der numerischen linearen Algebra (NLA) enthalten. Im Gegensatz zur traditionellen algorithmischen Differentiation (AD), bei der die zugrunde liegenden Algorithmen um zusätzliche Befehlere erweitert werden, sind in dieser Arbeit die Zerlegungen durch definierende Gleichungen charakterisiert. Basierend auf den definierenden Gleichungen werden Strukturausnutzende Algorithmen hergeleitet. Genauer, neuartige Algorithmen für die Propagation von Taylorpolynomen durch die QR, Cholesky und reell-symmetrischen Eigenwertzerlegung werden präsentiert. Desweiteren werden Algorithmen für den Rückwärtsmodus der AD hergeleitet, welche im Wesentlichen nur die Faktoren der Zerlegungen benötigen. Im Vergleich zum traditionellen Ansatz, bei dem alle Zwischenergebnisse gespeichert werden, ist dies eine Reduktion von O(N^3) zu O(N^2) für Algorithmen mit O(N^3) Komplexität. N ist hier die Größe der Matrix. Zusätzlich kann bestehende, hoch-optimierte Software verwendet werden. Ein Laufzeitvergleich zeigt, dass dies im Vergleich zum traditionellen Ansatz zu einer Beschleunigung in der Größenordnung 100 führen kann. Da die NLA Funktionen als Black Box betrachtet werden, ist desweiteren auch der Berechnungsgraph um Größenordnungen kleiner. Dies bedeutet, dass Software, welche Operator Overloading benutzt, weniger Overhead hervorruft und auch weniger Speicher benötigt.
 
This thesis provides a framework for the evaluation of first and higher-order derivatives and Taylor series expansions through large computer programs that contain numerical linear algebra (NLA) functions. It is a generalization of traditional algorithmic differentiation (AD) techniques in that NLA functions are regarded as black boxes where the inputs and outputs are related by defining equations. Based on the defining equations, structure-exploiting algorithms are derived. More precisely, novel algorithms for the propagation of Taylor polynomials through the QR, Cholesky,- and real-symmetric eigenvalue decomposition are shown. Recurrences for the reverse mode of AD, which require essentially only the returned factors of the decomposition, are also derived. Compared to the traditional approach where all intermediates of an algorithm are stored, this is a reduction from O(N^3) to O(N^2) for algorithms with O( N^3) complexity. N denotes the matrix size. The derived algorithms make it possible to use existing high-performance implementations. A runtime comparison shows that the treatment of NLA functions as atomic can be more than one order of magnitude faster than an automatic differentiation of the underlying algorithm. Furthermore, the computational graph is orders of magnitudes smaller. This reduces the additional memory requirements, as well as the overhead, of operator overloading techniques to a fraction.
 
Files in this item
Thumbnail
walter.pdf — Adobe PDF — 13.12 Mb
MD5: daef05ba9ebef1d7074047f836d49cbe
Cite
BibTeX
EndNote
RIS
Namensnennung - Keine kommerzielle NutzungNamensnennung - Keine kommerzielle NutzungNamensnennung - Keine kommerzielle Nutzung
Details

Related Items

Show related Items with similar Title, Author, Creator or Subject.

  • 2018-12-05Dissertation
    Perturbation analysis and numerical discretisation of hyperbolic partial differential algebraic equations describing flow networks 
    Huck, Christoph
    Diese Arbeit beschäftigt sich mit verschiedenen mathematischen Fragestellungen hinsichtlich der Modellierung, Analysis und numerischen Simulation von Gasnetzen. Hierbei liegt der Fokus auf der mathematischen Handhabung von ...
  • 2005-11-04Buch
    PDAEs and Further Mixed Systems as Abstract Differential Algebraic Systems 
    Lamour, René; März, Roswitha; Tischendorf, Caren
    Abstract differential algebraic systems (ADASs), i.e., differential algebraic systems with operators acting in real Hilbert spaces are introduced for a systematical treatment of coupled systems of PDEs, DAEs and integral ...
  • 2022-06-10Dissertation
    Simulation of Piecewise Smooth Differential Algebraic Equations with Application to Gas Networks 
    Aspects of Modelling, Algorithmic Treatment and Numerical Analysis
    Streubel, Tom
    Zuweilen wird gefördertes Erdgas als eine Brückentechnologie noch eine Weile erhalten bleiben, aber unsere Gasnetzinfrastruktur hat auch in einer Ära post-fossiler Brennstoffe eine Zukunft, um Klima-neutral erzeugtes Methan, ...
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/16514
Permanent URL
https://doi.org/10.18452/16514
HTML
<a href="https://doi.org/10.18452/16514">https://doi.org/10.18452/16514</a>