Show simple item record

2012-09-19Dissertation DOI: 10.18452/16585
Adaptive methods for risk calibration
dc.contributor.authorWeining, Wang
dc.date.accessioned2017-06-18T11:43:54Z
dc.date.available2017-06-18T11:43:54Z
dc.date.created2012-09-25
dc.date.issued2012-09-19
dc.identifier.urihttp://edoc.hu-berlin.de/18452/17237
dc.description.abstractDieser Artikel enthält vier Kapitel. Das erste Kapitel ist berechtigt, '''' lokalen Quantil Regression"und seine Zusammenfassung: Quantil Regression ist eine Technik, bedingte Quantil Kurven zu schätzen. Es bietet ein umfassendes Bild über ein Antwort-Kontingent auf erklärenden Variablen. In einem Rahmen flexible Modellierung ist eine besondere Form der bedingten Quantil-Kurve nicht von vornherein festgelegt. Dies motiviert eine lokale parametrische anstatt einer globalen feste Modell passend Ansatz. Eine nichtparametrische Glättung Schätzung der bedingte Quantil Kurve erfordert, zwischen lokalen Krümmung und stochastische auszugleichen Variabilität. In den ersten Essay empfehlen wir eine lokale Modellauswahl Technik, die eine adaptive Schätzung der bedingte bietet Quantil-Regression-Kurve bei jedem Entwurf-Punkt. Theoretische Ergebnisse behaupten, dass das vorgeschlagene adaptive Verfahren als führt gut als Orakel die würde das Risiko der lokalen Abschätzung für die Aufgabenstellung minimieren. Wir veranschaulichen die Leistung der Trolle.ger
dc.description.abstractThis article includes four chapters. The first chapter is entitled ``Local Quantile Regression", and its summary: Quantile regression is a technique to estimate conditional quantile curves. It provides a comprehensive picture of a response contingent on explanatory variables. In a flexible modeling framework, a specific form of the conditional quantile curve is not a priori fixed. This motivates a local parametric rather than a global fixed model fitting approach. A nonparametric smoothing estimate of the conditional quantile curve requires to balance between local curvature and stochastic variability. In the first essay, we suggest a local model selection technique that provides an adaptive estimate of the conditional quantile regression curve at each design point. Theoretical results claim that the proposed adaptive procedure performs as good as an oracle which would minimize the local estimation risk for the problem at hand. We illustrate the performance of the procedure by an extensive simulation study and consider a couple of applications: to tail dependence analysis for the Hong Kong stock market and to analysis of the distributions of the risk factors of temperature dynamics.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät
dc.rightsNamensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/de/
dc.subjectNonparametricsger
dc.subjectSemi-Parametrisierungger
dc.subjectlokale Adaptive Methodenger
dc.subjectHidden Markov Modelleger
dc.subjectNonparametricseng
dc.subjectSemi-parametricseng
dc.subjectLocal Adaptive Methodseng
dc.subjectHidden Markov Modelseng
dc.subject.ddc330 Wirtschaft
dc.titleAdaptive methods for risk calibration
dc.typedoctoralThesis
dc.identifier.urnurn:nbn:de:kobv:11-100204136
dc.identifier.doihttp://dx.doi.org/10.18452/16585
dc.identifier.alephidBV040439874
dc.date.accepted2012-08-02
dc.contributor.refereeHärdle, Wolfgang Karl
dc.contributor.refereeSpokoiny, Vladimir
dc.subject.dnb17 Wirtschaft
dc.subject.rvkQC 020
local.edoc.pages157
local.edoc.type-nameDissertation
bua.departmentWirtschaftswissenschaftliche Fakultät

Show simple item record