Multilevel Datenfusion konkurrierender Sensoren in der Fahrzeugumfelderfassung
Mathematisch-Naturwissenschaftliche Fakultät II
Mit der vorliegenden Dissertation soll ein Beitrag zur Steigerung der Genauigkeit und Zuverlässigkeit einer sensorgestützten Objekterkennung im Fahrzeugumfeld geleistet werden. Aufbauend auf einem Erfassungssystem, bestehend aus einer Stereokamera und einem Mehrzeilen-Laserscanner, werden teils neu entwickelte Verfahren für die gesamte Verarbeitungskette vorgestellt. Zusätzlich wird ein neuartiges Framework zur Fusion heterogener Sensordaten eingeführt, welches über eine Zusammenführung der Fusionsergebnisse aus den unterschiedlichen Verarbeitungsebenen in der Lage ist, die Objektbestimmung zu verbessern. Nach einer Beschreibung des verwendeten Sensoraufbaus werden die entwickelten Verfahren zur Kalibrierung des Sensorpaares vorgestellt. Bei der Segmentierung der räumlichen Punktdaten werden bestehende Verfahren durch die Einbeziehung von Messgenauigkeit und Messspezifik des Sensors erweitert. In der anschließenden Objektverfolgung wird neben einem neuartigen berechnungsoptimierten Ansatz zur Objektassoziierung ein Modell zur adaptiven Referenzpunktbestimmung und –Verfolgung beschrieben. Durch das vorgestellte Fusions-Framework ist es möglich, die Sensordaten wahlweise auf drei unterschiedlichen Verarbeitungsebenen (Punkt-, Objekt- und Track-Ebene) zu vereinen. Hierzu wird ein sensorunabhängiger Ansatz zur Fusion der Punktdaten dargelegt, der im Vergleich zu den anderen Fusionsebenen und den Einzelsensoren die genaueste Objektbeschreibung liefert. Für die oberen Fusionsebenen wurden unter Ausnutzung der konkurrierenden Sensorinformationen neuartige Verfahren zur Bestimmung und Reduzierung der Detektions- und Verarbeitungsfehler entwickelt. Abschließend wird beschrieben, wie die fehlerreduzierenden Verfahren der oberen Fusionsebenen mit der optimalen Objektbeschreibung der unteren Fusionsebene für eine optimale Objektbestimmung zusammengeführt werden können. Die Effektivität der entwickelten Verfahren wurde durch Simulation oder in realen Messszenarien überprüft. With the present thesis a contribution to the increase of the accuracy and reliability of a sensor-supported recognition and tracking of objects in a vehicle’s surroundings should be made. Based on a detection system, consisting of a stereo camera and a laser scanner, novel developed procedures are introduced for the whole processing chain of the sensor data. In addition, a new framework is introduced for the fusion of heterogeneous sensor data. By combining the data fusion results from the different processing levels the object detection can be improved. After a short description of the used sensor setup the developed procedures for the calibration and mutual orientation are introduced. With the segmentation of the spatial point data existing procedures are extended by the inclusion of measuring accuracy and specificity of the sensor. In the subsequent object tracking a new computation-optimized approach for the association of the related object hypotheses is presented. In addition, a model for a dynamic determination and tracking of an object reference point is described which exceeds the classical tracking of the object center in the track accuracy. By the introduced fusion framework it is possible to merge the sensor data at three different processing levels (point, object and track level). A sensor independent approach for the low fusion of point data is demonstrated which delivers the most precise object description in comparison to the other fusion levels and the single sensors. For the higher fusion levels new procedures were developed to discover and clean up the detection and processing mistakes benefiting from the competing sensor information. Finally it is described how the fusion results of the upper and lower levels can be brought together for an ideal object description. The effectiveness of the newly developed methods was checked either by simulation or in real measurement scenarios.
Files in this item