Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2014-03-25Dissertation DOI: 10.18452/16935
A theory of conditional sets
Jamneshan, Asgar
Mathematisch-Naturwissenschaftliche Fakultät II
Diese Arbeit befasst sich mit der Entwicklung einer Theorie bedingter Mengen. Bedingte Mengenlehre ist reich genug um einen bedingten mathematischen Diskurs zu führen, dessen Möglichkeit wir durch die Konstruktion einer bedingten Topologielehre und bedingter reeller Analysis aufzeigen. Wir beweisen die bedingte Version folgender Sätze: Ultrafilterlemma, Tychonoff, Borel-Lebesgue, Heine-Borel, Bolzano-Weierstraß, und das Gaplemma von Debreu. Darüberhinaus beweisen wir die bedingte Version derjenigen Resultate der klassischen Mathematik, die in den Beweisen dieser Sätze benötigt werden, beginnend mit der Mengenlehre. Wir diskutieren die Verbindung von bedingter Mengenlehre zur Garben-, Topos- und L0-Theorie.
 
In this thesis, we develop a theory of conditional sets. Conditional set theory is sufficiently rich in order to allow for a conditional mathematical reasoning, the possibility of which we demonstrate by constructing a conditional general topology and a conditional real analysis. We prove the conditional version of the following theorems: Ultrafilter Lemma, Tychonoff, Borel-Lebesgue, Heine-Borel, Bolzano-Weierstraß, and Debreu’s Gap Lemma. Moreover, we prove the conditional version of those results in classical mathematics which are needed in the proofs of these theorems, starting from set theory. We discuss the connection of conditional set theory to sheaf, topos and L0-theory.
 
Files in this item
Thumbnail
jamneshan.pdf — Adobe PDF — 1.079 Mb
MD5: df9217e4180c5f8b13d5a00b9bb916a1
Cite
BibTeX
EndNote
RIS
Namensnennung - Keine kommerzielle Nutzung - Keine BearbeitungNamensnennung - Keine kommerzielle Nutzung - Keine BearbeitungNamensnennung - Keine kommerzielle Nutzung - Keine BearbeitungNamensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/16935
Permanent URL
https://doi.org/10.18452/16935
HTML
<a href="https://doi.org/10.18452/16935">https://doi.org/10.18452/16935</a>