Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2014-12-15Dissertation DOI: 10.18452/17082
Quantifying urban land cover by means of machine learning and imaging spectrometer data at multiple spatial scales
Okujeni, Akpona
Mathematisch-Naturwissenschaftliche Fakultät
Das weltweite Ausmaß der Urbanisierung zählt zu den großen ökologischen Herausforderungen des 21. Jahrhunderts. Die Fernerkundung bietet die Möglichkeit das Verständnis dieses Prozesses und seiner Auswirkungen zu erweitern. Der Fokus dieser Arbeit lag in der Quantifizierung der städtischen Landbedeckung mittels Maschinellen Lernens und räumlich unterschiedlich aufgelöster Hyperspektraldaten. Untersuchungen berücksichtigten innovative methodische Entwicklungen und neue Möglichkeiten, die durch die bevorstehende Satellitenmission EnMAP geschaffen werden. Auf Basis von Bilder des flugzeugestützten HyMap Sensors mit Auflösungen von 3,6 m und 9 m sowie simulierten EnMAP-Daten mit einer Auflösung von 30 m wurde eine Kartierung entlang des Stadt-Umland-Gradienten Berlins durchgeführt. Im ersten Teil der Arbeit wurde die Kombination von Support Vektor Regression mit synthetischen Trainingsdaten für die Subpixelkartierung eingeführt. Ergebnisse zeigen, dass sich der Ansatz gut zur Quantifizierung thematisch relevanter und spektral komplexer Oberflächenarten eignet, dass er verbesserte Ergebnisse gegenüber weiteren Subpixelverfahren erzielt, und sich als universell einsetzbar hinsichtlich der räumlichen Auflösung erweist. Im zweiten Teil der Arbeit wurde der Wert zukünftiger EnMAP-Daten für die städtische Fernerkundung abgeschätzt. Detaillierte Untersuchungen unterstreichen deren Eignung für eine verbesserte und erweiterte Beschreibung der Stadt nach dem bewährten Vegetation-Impervious-Soil-Schema. Analysen der Möglichkeiten und Grenzen zeigen sowohl Nachteile durch die höhere Anzahl von Mischpixel im Vergleich zu hyperspektralen Flugzeugdaten als auch Vorteile aufgrund der verbesserten Differenzierung städtischer Materialien im Vergleich zu multispektralen Daten. Insgesamt veranschaulicht diese Arbeit, dass die Kombination von hyperspektraler Satellitenbildfernerkundung mit Methoden des Maschinellen Lernens eine neue Qualität in die städtische Fernerkundung bringen kann.
 
The global dimension of urbanization constitutes a great environmental challenge for the 21st century. Remote sensing is a valuable Earth observation tool, which helps to better understand this process and its ecological implications. The focus of this work was to quantify urban land cover by means of machine learning and imaging spectrometer data at multiple spatial scales. Experiments considered innovative methodological developments and novel opportunities in urban research that will be created by the upcoming hyperspectral satellite mission EnMAP. Airborne HyMap data at 3.6 m and 9 m resolution and simulated EnMAP data at 30 m resolution were used to map land cover along an urban-rural gradient of Berlin. In the first part of this work, the combination of support vector regression with synthetically mixed training data was introduced as sub-pixel mapping technique. Results demonstrate that the approach performs well in quantifying thematically meaningful yet spectrally challenging surface types. The method proves to be both superior to other sub-pixel mapping approaches and universally applicable with respect to changes in spatial scales. In the second part of this work, the value of future EnMAP data for urban remote sensing was evaluated. Detailed explorations on simulated data demonstrate their suitability for improving and extending the approved vegetation-impervious-soil mapping scheme. Comprehensive analyses of benefits and limitations of EnMAP data reveal both challenges caused by the high numbers of mixed pixels, when compared to hyperspectral airborne imagery, and improvements due to the greater material discrimination capability when compared to multispectral spaceborne imagery. In summary, findings demonstrate how combining spaceborne imaging spectrometry and machine learning techniques could introduce a new quality to the field of urban remote sensing.
 
Files in this item
Thumbnail
okujeni.pdf — Adobe PDF — 24.83 Mb
MD5: 2d1e0954a0dbd3fa732bbd625306fe92
Cite
BibTeX
EndNote
RIS
Namensnennung - Keine kommerzielle Nutzung - Keine BearbeitungNamensnennung - Keine kommerzielle Nutzung - Keine BearbeitungNamensnennung - Keine kommerzielle Nutzung - Keine BearbeitungNamensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/17082
Permanent URL
https://doi.org/10.18452/17082
HTML
<a href="https://doi.org/10.18452/17082">https://doi.org/10.18452/17082</a>