Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2015-09-02Dissertation DOI: 10.18452/17295
Finite sample analysis of profile M-estimators
Andresen, Andreas
Mathematisch-Naturwissenschaftliche Fakultät
In dieser Arbeit wird ein neuer Ansatz für die Analyse von Profile Maximierungsschätzern präsentiert. Es werden die Ergebnisse von Spokoiny (2011) verfeinert und angepasst für die Schätzung von Komponenten von endlich dimensionalen Parametern mittels der Maximierung eines Kriteriumfunktionals. Dabei werden Versionen des Wilks Phänomens und der Fisher-Erweiterung für endliche Stichproben hergeleitet und die dafür kritische Relation der Parameterdimension zum Stichprobenumfang gekennzeichnet für den Fall von identisch unabhängig verteilten Beobachtungen und eines hinreichend glatten Funktionals. Die Ergebnisse werden ausgeweitet für die Behandlung von Parametern in unendlich dimensionalen Hilberträumen. Dabei wir die Sieve-Methode von Grenander (1981) verwendet. Der Sieve-Bias wird durch übliche Regularitätsannahmen an den Parameter und das Funktional kontrolliert. Es wird jedoch keine Basis benötigt, die orthogonal in dem vom Model induzierten Skalarprodukt ist. Weitere Hauptresultate sind zwei Konvergenzaussagen für die alternierende Maximisierungsprozedur zur approximation des Profile-Schätzers. Alle Resultate werden anhand der Analyse der Projection Pursuit Prozedur von Friendman (1981) veranschaulicht. Die Verwendung von Daubechies-Wavelets erlaubt es unter natürlichen und üblichen Annahmen alle theoretischen Resultate der Arbeit anzuwenden.
 
This thesis presents a new approach to analyze profile M-Estimators for finite samples. The results of Spokoiny (2011) are refined and adapted to the estimation of components of a finite dimensional parameter using the maximization of a criterion functional. A finite sample versions of the Wilks phenomenon and Fisher expansion are obtained and the critical ratio of parameter dimension to sample size is derived in the setting of i.i.d. samples and a smooth criterion functional. The results are extended to parameters in infinite dimensional Hilbert spaces using the sieve approach of Grenander (1981). The sieve bias is controlled via common regularity assumptions on the parameter and functional. But our results do not rely on an orthogonal basis in the inner product induced by the model. Furthermore the thesis presents two convergence results for the alternating maximization procedure. All results are exemplified in an application to the Projection Pursuit Procedure of Friendman (1981). Under a set of natural and common assumptions all theoretical results can be applied using Daubechies wavelets.
 
Files in this item
Thumbnail
andresen.pdf — Adobe PDF — 1.737 Mb
MD5: 65927267f6aefbe50cda722471533188
Cite
BibTeX
EndNote
RIS
Namensnennung - Weitergabe unter gleichen BedingungenNamensnennung - Weitergabe unter gleichen BedingungenNamensnennung - Weitergabe unter gleichen Bedingungen
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/17295
Permanent URL
https://doi.org/10.18452/17295
HTML
<a href="https://doi.org/10.18452/17295">https://doi.org/10.18452/17295</a>