Advancing the capabilities of Rapid Acquisition with Relaxation Enhancement magnetic resonance imaging
development of novel methodology and in-vivo applications
Mathematisch-Naturwissenschaftliche Fakultät
Die vorliegende Arbeit präsentiert neuartige schnelle Bildgebungstechniken für die Hoch- und Ultrahochfeld Magnetresonanztomographie. Zunächst werden die Grundprinzipien schneller Spin-Echo Techniken beleuchtet. Diese physikalischen Überlegungen bilden die Grundlage für die Entwicklung modifizierter Techniken. In einer ersten Entwicklungsstufe wird eine neue Variante der schnellen Spin-Echo Bildgebung vorgestellt. Diese Technik generiert anatomischen und funktionellen Bildkontrast innerhalb von nur einer Datenaufnahme. Der entscheidende Vorteil des entwickelten Ansatzes besteht in einer wesentlichen Verkürzung der Messzeit. Darüber hinaus wird eine deutliche Reduktion von Bildfehlern ermöglicht, die im konventionellen Fall häufig durch Bewegung erzeugt werden. Die zweite Entwicklungsstufe befasst sich mit der Implementierung einer schnellen Spin-Echo Technik zur Abbildung des physikalischen Phänomens der Brownschen Molekularbewegung. Diffusionsmessungen der Molekülbewegungen sind durch die Überlagerung von makroskopischen Bewegungen sehr anspruchsvoll. Diese Schwierigkeit wird in der vorliegenden Arbeit methodisch überwunden, indem eine diffusionsgewichtete schnelle Spin Echo Technik implementiert wird. Die dritte Entwicklungsstufe konzentriert sich auf suszeptibiltätsgewichtete schnelle Spin-Echo Bildgebung. Herkömmliche Techniken zur suszeptibiltätsgewichteten Bildgebung sind anfällig für Artefakte, die sich in Signalauslöschungen äußern. Um dieser Herausforderung methodisch zu begegnen, untersucht diese Arbeit das Potential einer suszeptibiltätsgewichteten schnellen Spin-Echo Technik zur Charakterisierung der Mikrostruktur des Herzmuskels bei 7.0 T. Ein Ziel der in dieser Arbeit neu entwickelten schnellen Spin-Echo Methoden besteht darin, Limitierungen bestehender Techniken zu beheben. Damit soll richtungsweisend über die Grundlagenforschung hinaus die Basis für klinische Anwendungen der entwickelten physikalischen Erkenntnisse und Methoden gelegt werden. This thesis presents novel fast imaging techniques for magnetic resonance imaging. Rapid Acquisition with Relaxation Enhancement (RARE) is a fast imaging technique. An ever growing number of clinical applications render clinically and physically motivated advancement of RARE imaging necessary. This thesis focuses on the advancement of RARE imaging. For this purpose, the basic principle of RARE imaging is examined. The first part proposes a novel RARE variant which provides simultaneous anatomical and functional contrast within one acquisition. This approach provides an alternative versus conventional RARE variants where sequential acquisitions are put to use to achieve different image contrasts. With the speed gain of the proposed approach a substantial shortening of scanning time can be accomplished together with a reduction in the propensity for motion. The second part focuses on diffusion weighted MRI. Probing diffusion on a micrometer scale is challenging because of MRI’s sensitivity to bulk motion. Unfortunately, conventional rapid diffusion weighted imaging techniques are prone to severe image distortions. Realizing this constraint, a diffusion weighted RARE technique that affords the generation of diffusion weighted images free of distortion is implemented. The third part is formed around susceptibility weighted MRI. The underlying biophysical mechanisms allow the assessment of tissue microstructure. Common susceptibility weighted imaging techniques are prone to image artifacts. Recognizing the opportunities of susceptibility weighted MRI the potential of a susceptibility weighted RARE technique is investigated with the goal to assess myocardial microstructure. The goal of the novel RARE developments is to overcome constraints of existing imaging techniques. The physical considerations and the novel methodology introduced in this thesis are brought beyond the scope of basic research. Moreover, the foundation for clinical applicability is created.
Files in this item