Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2015-11-30Dissertation DOI: 10.18452/17377
Characterizing cosmic neutrino sources
a measurement of the energy spectrum and flavor composition of the cosmic neutrino flux observed with the IceCube Neutrino Observatory
Mohrmann, Lars
Mathematisch-Naturwissenschaftliche Fakultät
Das IceCube Neutrino Observatorium ist ein km^3-großes Neutrinoteleskop und befindet sich am geographischen Südpol. Das Ziel des Experiments ist es, kosmische Neutrinos nachzuweisen. Es wird erwartet, dass solche Neutrinos in Wechselwirkungen von hochenergetischer kosmischer Strahlung mit Materie oder Photonen in der Nähe ihrer Beschleunigungsumgebung entstehen. Der erste Nachweis für einen Fluss von kosmischen Neutrinos wurde von der IceCube-Kollaboration erbracht. Der Ursprung des Flusses ist noch nicht bekannt, dennoch können die Eigenschaften der Quellen durch eine Messung des Energiespektrums und der Zusammensetzung aus Elektron-, Muon-, und Tau-Neutrinos des Flusses eingeschränkt werden. Die vorliegende Arbeit stellt die erste umfassende Analyse von Daten des IceCube-Experiments im Hinblick auf diese Eigenschaften des Flusses dar. Hierfür wurden mehrere Datensätze kombiniert und gemeinsam analysiert. Es wurden experimentell beobachtete Verteilungen von rekonstruierter Energie, Zenithwinkel und Teilchen-Signatur mit Modellverteilungen angepasst. Unter der Annahme, dass der Fluss isotrop ist und zu gleichen Teilen aus allen Neutrino-Flavors besteht, wird das Spektrum durch ein Potenzgesetz mit Normalisierung (6.7_{-1.2}^{+1.1})x10^{-18}GeV^{-1}s^{-1}sr^{-1}cm^{-2} bei 100 TeV und spektralem Index -2.50+-0.09 zwischen Neutrino-Energien von 25 TeV und 2.8 PeV gut beschrieben. Ein spektraler Index von -2 kann mit einer Signifikanz von 3.8 Standardabweichungen ausgeschlossen werden. Die Flavor-Zusammensetzung ist kompatibel mit Erwartungen für Standard-Prozesse der Neutrino-Produktion. Die ausschließliche Produktion von Elektron-Neutrinos kann hingegen mit einer Signifikanz von 3.6 Standardabweichungen ausgeschlossen werden. Unter der Annahme, dass die Neutrino-Flavor während der Propagation von den Quellen zur Erde durch Standard-Neutrino-Oszillationen transformiert werden, beträgt der gemessene Anteil an Elektron-Neutrinos an der Erde (18+-11)%.
 
The IceCube Neutrino Observatory is a km^3-sized neutrino telescope located at the geographical South Pole. Its primary purpose is the detection of high-energy cosmic neutrinos. Such neutrinos are expected to be produced in interactions of high-energy cosmic rays with ambient matter or photons close to their acceleration sites. The IceCube Collaboration has reported the first evidence for a flux of high-energy cosmic neutrinos. While the origin of the flux remains unknown so far, the properties of its sources can be constrained by measuring its energy spectrum and its composition of electron, muon, and tau neutrinos. The present work constitutes the first comprehensive analysis of IceCube data with respect to these principal characteristics of the flux. Several data sets were assembled and simultaneously studied in a combined analysis. Experimentally observed distributions of reconstructed energy, zenith angle and particle signature were fitted with model distributions. Assuming the cosmic neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum is well described by a power law with normalization (6.7_{-1.2}^{+1.1})x10^{-18}GeV^{-1}s^{-1}sr^{-1}cm^{-2} at 100 TeV and spectral index -2.50+-0.09 for neutrino energies between 25 TeV and 2.8 PeV. A spectral index of -2 is disfavored with a significance of 3.8 standard deviations. The flavor composition is compatible with that expected for standard neutrino production processes at the sources. However, a scenario in which only electron neutrinos are produced is disfavored with a significance of 3.6 standard deviations. Assuming that standard neutrino oscillations transform the neutrino flavors during propagation from the sources to the Earth, the measured fraction of electron neutrinos at Earth is (18+-11)%.
 
Files in this item
Thumbnail
mohrmann.pdf — Adobe PDF — 10.18 Mb
MD5: e67b3c5488d6267a8cffb243810efa7a
Cite
BibTeX
EndNote
RIS
Namensnennung - Keine kommerzielle NutzungNamensnennung - Keine kommerzielle NutzungNamensnennung - Keine kommerzielle Nutzung
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/17377
Permanent URL
https://doi.org/10.18452/17377
HTML
<a href="https://doi.org/10.18452/17377">https://doi.org/10.18452/17377</a>