Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2016-11-11Dissertation DOI: 10.18452/17652
Statistics for diffusion processes with low and high-frequency observations
Chorowski, Jakub
Mathematisch-Naturwissenschaftliche Fakultät
Diese Dissertation betrachtet das Problem der nichtparametrischen Schätzung der Diffusionskoeffizienten eines ein-dimensionalen und zeitlich homogenen Itô-Diffusionsprozesses. Dabei werden verschiedene diskrete Sampling Regimes untersucht. Im ersten Teil zeigen wir, dass eine Variante des von Gobet, Hoffmann und Reiß konstruierten Niedrigfrequenz-Schätzers auch im Fall von zufälligen Beobachtungszeiten verwendet werden kann. Wir beweisen, dass der Schätzer optimal im Minimaxsinn und adaptiv bezüglich der Verteilung der Beobachtungszeiten ist. Außerdam wenden wir die Lepski Methode an um einen Schätzer zu erhalten, der zusätzlich adaptiv bezüglich der Sobolev-Glattheit des Drift- und Volatilitätskoeffizienten ist. Im zweiten Teil betrachten wir das Problem der Volatilitätsschätzung für äquidistante Beobachtungen. Im Fall eines stationären Prozesses, mit kompaktem Zustandsraum, erhalten wir einen Schätzer, der sowohl bei hochfrequenten als auch bei niedrigfrequenten Beobachtungen die optimale Minimaxrate erreicht. Die Konstruktion des Schätzers beruht auf spektralen Methoden. Im Fall von niedrigfrequenten Beobachtungen ist die Analyse des Schätzers ähnlich wie diejenige in der Arbeit von Gobet, Hoffmann und Reiß. Im hochfrequenten Fall hingegen finden wir die Konvergenzraten durch lokale Mittelwertbildung und stellen daubt eine Verbindung zum Hochfrequenzschätzer von Florens-Zmirou her. In der Analyse unseres universalen Schätzers benötigen wir scharfe obere Schranken für den Schätzfehler von Funktionalen der Occupation time für unstetige Funktionen. Wir untersuchen eine auf Riemannsummen basierende Approximation der Occupation time eines stationären, reversiblen Markov-Prozesses und leiten obere Schranken für den quadratischen Fehler her. Im Fall von Diffusionsprozessen erhalten wir Konvergenzraten für Sobolev Funktionen.
 
In this thesis, we consider the problem of nonparametric estimation of the diffusion coefficients of a scalar time-homogeneous Itô diffusion process from discrete observations under various sampling assumptions. In the first part, the low-frequency estimation method proposed by Gobet, Hoffmann and Reiß is modified to cover the case of random sampling times. The estimator is shown to be optimal in the minimax sense and adaptive to the sampling distribution. Moreover, Lepski''s method is applied to adapt to the unknown Sobolev smoothness of the drift and volatility coefficients. In the second part, we address the problem of volatility estimation from equidistant observations without a predefined frequency regime. In the case of a stationary diffusion with compact state space and boundary reflection, we introduce a universal estimator that attains the minimax optimal convergence rates for both low and high-frequency observations. Being based on the spectral method, the low-frequency analysis is similar to the study conducted by Gobet, Hoffmann and Reiß. On the other hand, the derivation of the convergence rates in the high-frequency regime requires local averaging of the low-frequency estimator, which makes it mimic the behaviour of the classical high-frequency estimator introduced by Florens-Zmirou. The analysis of the universal estimator requires tight upper bounds on the estimation error of the occupation time functional for non-continuous functions. In the third part of the thesis, we thus consider the Riemann sum approximation of the occupation time functional of a stationary, time-reversible Markov process. Upper bounds on the squared mean estimation error are provided. In the case of diffusion processes, convergence rates for Sobolev regular functions are obtained.
 
Files in this item
Thumbnail
chorowski.pdf — Adobe PDF — 1.477 Mb
MD5: b20203c7930ea1454612b80643848bf8
Cite
BibTeX
EndNote
RIS
NamensnennungNamensnennung
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/17652
Permanent URL
https://doi.org/10.18452/17652
HTML
<a href="https://doi.org/10.18452/17652">https://doi.org/10.18452/17652</a>