Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2017-08-04Dissertation DOI: 10.18452/18130
Horizontal Dirac Operators in CR Geometry
Stadtmüller, Christoph Martin
Mathematisch-Naturwissenschaftliche Fakultät
In dieser Dissertation beschäftigen wir uns mit angepassten Zusammenhängen und ihren (horizontalen) Dirac-Operatoren auf strikt pseudokonvexen CR-Mannigfaltigkeiten. Einen Zusammenhang nennen wir dann angepasst, wenn er die relevanten Daten parallelisiert. Wir beschreiben den Raum der angepassten Zusammenhänge, indem wir ihre Torsionstensoren studieren, von denen gewisse Teile durch die Geometrie der Mannigfaltigkeit festgelegt sind, während andere frei wählbar sind. Als Anwendung betrachten wir die Eigenschaften der Dirac-Operatoren, die zu diesen Zusammenhängen gehören. Weiter betrachten wir horizontale Dirac-Operatoren, die nur in Richtung des horizontalen Bündels H ableiten. Diese Operatoren sind besser an die Sub-Riemannsche Struktur einer CR-Mannigfaltigkeit angepasst als die vollen Dirac-Operatoren. Wir diskutieren, wann diese Operatoren formal selbstadjungiert sind und beweisen eine Weitzenböck-Typ-Formel. Wir konzentrieren uns dann auf den horizontalen Dirac-Operator zum Tanaka-Webster-Zusammenhang. Dieser ändert sich konform kovariant, wenn wir die Kontaktform konform ändern. Für diesen Operator betrachten wir weiterhin zwei Beispiele: Wir betrachten S^1-Bündel über Kähler-Mannigfaltigkeiten, insbesondere berechnen wir für Sphären einen Teil des Spektrums. Außerdem betrachten wir kompakte Quotienten der Heisenberggruppe und berechnen hier in den Dimensionen 3 und 5 das volle Spektrum. Die horizontalen Dirac-Operatoren sind nicht mehr elliptisch, sondern „elliptisch in Richtung von H“. Mithilfe des Heisenbergkalküls stellen wir fest, dass die horizontalen Dirac-Operatoren nicht hypoelliptisch sind. Im Fall des Tanaka-Webster-Zusammenhangs lässt sich aber zeigen, dass der zugehörige Operator auf gewissen Teilen des Spinorbündels hypoelliptisch ist. Dies genügt, um zu beweisen, dass er (nun auf dem gesamten Spinorbündel) ein reines Punktspektrum hat und die Eigenräume, bis auf den Kern, endlich-dimensional sind und aus glatten Eigenspinoren bestehen.
 
In the present thesis, we study adapted connections and their (horizontal) Dirac operators on strictly pseudoconvex CR manifolds. An adapted connection is one that parallelises the relevant data. We describe the space of adapted connections through their torsion tensors, certain parts of which are determined by the geometry of the manifold, while others may be freely chosen. As an application, we study the properties of the Dirac operators induced by these connections. We further consider horizontal Dirac operators, which only derive in the direction of the horizontal bundle H. These operators are more adapted to the essentially sub-Riemannian structure of a CR manifold than the full Dirac operators. We discuss the question of their self-adjointness and prove a Weitzenböck type formula for these operators. Focusing on the horizontal Dirac operator associated with the Tanaka-Webster connection, we show that this operator changes in a covariant way if we change the contact form conformally. Moreover, for this operator we discuss two examples: On S^1-bundles over Kähler manifolds, we can compute part of the spectrum and for compact quotients of the Heisenberg group, we determine the whole spectrum in dimensions three and five. The horizontal Dirac operators are not elliptic, but rather "elliptic in some directions". We review the Heisenberg Calculus for such operators and find that in general, the horizontal Dirac operators are not hypoelliptic. However, in the case of the Tanaka-Webster connection, the associated horizontal Dirac operator is hypoelliptic on certain parts of the spinor bundle and this is enough to prove that its spectrum consists only of eigenvalues and except for the kernel, the corresponding eigenspaces are finite-dimensional spaces of smooth sections.
 
Files in this item
Thumbnail
stadtmueller.pdf — Adobe PDF — 1.256 Mb
MD5: 1eb109de75191a7880e39d85b4f68d2e
Cite
BibTeX
EndNote
RIS
Namensnennung-NichtKommerziell-KeineBearbeitung 3.0 DeutschlandNamensnennung-NichtKommerziell-KeineBearbeitung 3.0 DeutschlandNamensnennung-NichtKommerziell-KeineBearbeitung 3.0 DeutschlandNamensnennung-NichtKommerziell-KeineBearbeitung 3.0 Deutschland
Details

Related Items

Show related Items with similar Title, Author, Creator or Subject.

  • 2021-01-15Masterarbeit
    Conformal Geodesics in Cartan Calculus 
    Platt, Daniel
    Die vorliegende Arbeit behandelt konforme Geodäten und ihre Beschreibung durch Cartangeometrie. Wir besprechen die Definition der Cartangeometrie und erklären, in welchem Sinne konforme Strukturen in 1:1-Beziehung mit ...
  • 2013-03-27Dissertation
    Conformally covariant differential operators acting on spinor bundles and related conformal covariants 
    Fischmann, Matthias
    Konforme Potenzen des Dirac Operators einer semi Riemannschen Spin-Mannigfaltigkeit werden untersucht. Wir präsentieren einen neuen Beweis, basierend auf dem Traktor Kalkül, für die Existenz von konformen ungeraden Potenzen ...
  • 2014-08-25Dissertation
    Boundary constructions for CR manifolds and Fefferman spaces 
    Fehlinger, Luise
    In dieser Dissertation werden Cartan-Ränder von CR-Mannigfaltigkeiten und ihren Fefferman-Räumen besprochen. Der Fefferman-Raum einer strikt pseudo-konvexen CR-Mannigfaltigkeit ist als das Bündel aller reellen Strahlen ...
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/18130
Permanent URL
https://doi.org/10.18452/18130
HTML
<a href="https://doi.org/10.18452/18130">https://doi.org/10.18452/18130</a>