Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2017-09-27Dissertation DOI: 10.18452/18410
Investigation of biochar stability by means of gas isotopic measurements
Lanza, Giacomo
Lebenswissenschaftliche Fakultät
Untersuchungsgegenstand der vorliegenden Dissertation sind biomassebasierte Kohlen (Biokohlen, biochar), welche für eine langfristige Kohlenstoffspeicherung in Böden mit dem gleichzeitigen Ziel der zusätzlichen Bodenverbesserung hergestellt werden. Die Auswahl der Kohlen umfasste Kohlen aus Pyrolyse- und hydrothermale Carbonisierung (HTC). In dieser Arbeit werden einige zentrale Phänomene, die bei deren Ausbringung in einem bestehenden Bodenökosystem auftreten können, nähergehend untersucht. Einerseits beeinflusst das fremde Material den Stoffwechsel und die Abundanz und Vielfalt innerhalb der mirkobiellen Gemeinschaft im Boden; im Gegenzug spielen die Mikroorganismen eine aktive Rolle beim Abbau des neuen Substrats. Diese beiden Aspekte sind größer Bedeutung, um bewerten zu können, wie erfolgsversprechend der Einsatz einer bestimmten Kohle im Boden hinsichtlich der Langlebigkeit, der gewünschten Ertragseffekte sowie möglicher Nebenwirkungen ist. Daraus ergeben sich die beiden folgenden zwei Fragestellungen, auf die diese Arbeit fokusiert ist: • Welche Faktoren beeinflussen die Abbaubarkeit der Kohlen im Boden? • Welche Wirkungen haben die Kohlen auf die Bodenatmung, auf den Boden-C-Gehalt, auf die mikrobielle Abundanz und auf die Dynamik der mikrobiellen Gemeinschaft? Als mögliche Einflussgrößen für die Abbaubarkeit der Kohlen wurden die Art der Kohlenherstellung, eine mögliche Nachbehandlung, der Alterungsprozess sowie die Zugabe einer Nährstoff- und einer labilen Kohlenstoffquelle getestet. Für diese Studie wurden Pyrolyse- und HTC-Kohlen aus Mais-Silage in einen Sandboden ausgebracht. Grundlage aller Versuche war die Untersuchung der Respirationsdynamik in unterschiedlichen Boden-Kohle-Gemischen, die durch Infrarotspektrometrie ermittelt wurde. Sie diente als Indikator für die mikrobielle Aktivität und dem daraus resultierenden Abbau der Substrate. Ergänzend wurde am Anfang und am Ende jedes Versuchs der Boden-Kohlenstoffgehalt gemessen. Die Versuche erfolgten auf verschiedenen Skalen: • Kurzzeit-Laborinkubationen (10 Tage) unter konstanten klimatischen Bedingungen in einem automatisch gesteuerten Durchflusssystem, an das das Messgerät direkt angeschlossen wurde. • Parzellenversuch (2 Jahre) im Freiland im Nordwesten Brandenburgs, bei dem die Bestimmung der Bodenatmung mittels wiederholter Beprobung aus auf der Ackerfläche gestellten geschlossenen Hauben erfolgte. In einer Laborinkubation wurde zusätzlich eine qPCR (quantitative Echtzeit Polymerase Kettenreaktion) zur Bestimmung der Abundanz ausgewählter mikrobieller Gruppen eingesetzt. Im Feldversuch wurde außerdem die Abundanz der stabilen Kohlenstoff-Isotopen (12C und 13C) im Boden und im freigesetzten CO2 ermittelt, um den Abbau der Kohlen vom Abbau des bodenorganischen Kohlenstoffs, der durch die Kohlen beeinflusst sein kann (priming), zu unterscheiden. Die Ergebnisse bestätigen die erhöhte Stabilität beider Kohlen im Vergleich zum Ausgangsmaterial, vor allem für die Pyrolyse-Kohle, deren Abbau sowohl im Labor als auch im Freiland am langsamsten erfolgte. Bei beiden Kohlen sank die Abbaubarkeit mit ihrer Alterung. Anhand der Abbauraten im zweiten Jahr des Feldversuchs wurden für die Pyrolyse- und HTC-Kohle Halbwertszeiten von 81 bzw. 60 Jahren ermittelt. Im Gegensatz zur Pyrolyse-Kohle wies der Abbau der HTC-Kohle eine komplexere Dynamik auf, was im Lauf der 10-tägigen Inkubationsversuche mit einer Verschiebung der mikrobiellen Gemeinschaft einherging. Im ersten Jahr des Freilandversuchs kam es bei der HTC-Kohle zur Ausgasung flüchtiger und leicht abbaubarer Kohlenstoffverbindungen, wodurch die Stabilität im Folgejahr deutlich erhöht wurde. Eine Nachbehandlung der Kohlen durch anaerobe Fermentierung führte zu einer deutlichen Verminderung der kurzzeitigen Ausgasung bei HTC-Kohle, sowohl im Freiland als auch im Labor, jedoch zu einer langfristigen Reduktion der Stabilität beider Kohlen: die ermittelten Halbwertszeiten für die fermentierte Pyrolyse- und HTC-Kohle nach dem zweiten Jahr des Feldversuchs betrugen 14 bzw. 13 Jahren. Die Wirkung der unbehandelten Kohlen auf die Abundanz der untersuchten mikrobiellen Gruppen im C-armen Boden war stark reduziert im Vergleich zum Ausgangsmaterial, und unter C-reichen Bedingungen kam es zu einer Hemmung der Aktivitätssteigerung. Die Zugabe leicht verfügbaren Kohlenstoffs wie Glukose zum reinen Boden in einem Inkubationsversuch steigerte die Bodenatmung erheblich und erhöhte die Variationsbreite der mikrobiellen Gemeinschaft. In Gegenwart der Kohlen war dies allerdings weniger stark ausgeprägt. Bei Zugabe mineralischen Stickstoffs in Gegenwart von Kohlen wurde hingegen keine signifikante Veränderung der Bodenatmung nachgewiesen. Die Inkubationsversuche haben es ermöglicht, die Kurzzeitdynamik der Bodenatmung und die Anpassung der mikrobiellen Gemeinschaft nach Zugabe der Kohlen und zusätzlicher C- und N-Quellen nachzuweisen. Im Freilandversuch konnte die Abbaudynamik von Kohlenstoffverbindungen unter Praxisbedingungen untersucht werden und durch die Messung der stabilen Isotope differenzierte Aussagen über die langfristige Stabilität von zugesetzten Kohlen und der bodenorganischen Substanz getroffen werden. Eine langfristige Festlegung von Kohlenstoff ist im Boden in Form von Biokohlen ist möglich. Allerdings hängt die Dauer der Festlegung von einer Vielzahl von Faktoren wie der Art der Ausgangsstoffe, den Prozessbedingungen, den Interaktionen zwischen Kohlepartikeln und Bodenorganismen und nicht zuletzt der Versuchsdauer ab. Während Kurzzeitversuche eine gute Möglichkeit darstellen, um die Effekte veränderter Bedingungen im Boden aufzuzeigen, kann die Kohlestabilität im Boden und damit das C-Sequestrierungspotenzial am zuverlässigsten nur in Langzeitstudien im Freiland abgeschätzt werden.
 
The object of the present thesis is charred biomass (biochar) produced for double aim of carbon storage in soil and improvement of soil properties. The chosen chars included chars from pyrolysis and hydrothermal carbonisation (HTC). The present work investigates closely some basic phenomena which can occur upon application of chars into an existing soil ecosystem: on the one hand, the allochthonous material affects the metabolism and the relative abundance of different microbial groups; on the other hand the microorganisms play an active role in the degradation of the new substrate. These two aspects are crucial to evaluate the suitability of the application of a specific char in the soil, particularly as concerns its stability, the length of time the char remains in the soil, the expected effects on crop yields, as well as possible side effects on the soil ecosystem. Based on this, two research questions arise which have been investigated in this thesis: • What factors affect the degradability of chars in soil? • How do the chars influence soil respiration, soil carbon content, microbial abundance and the dynamics of the microbial community? The production process, a post-treatment, the ageing process as well as the addition of a source of nutrients and a source of labile carbon were assessed as possible factors in determining the degradability of chars. For the present study, pyrolysis char and HTC char from maize silage were applied to a sandy soil. The basis of all experiments was an investigation of the respiration dynamics in different soil/char mixtures, measured through an infrared spectrometer, which was used to track the microbial activity and the substrate degradation. As a complement, soil carbon was also measured at the beginning and at the end of each experiment. The investigations were performed at different scales: • Short-term laboratory incubations (10 days) under constant climatic conditions in an automatic multi-channel flowthrough system, with direct plug-in for the measurement instrument. • A plot-wise investigation (2 years) in an agricultural field in North-West Brandenburg, where the soil respiration was measured by a repeated sampling from static chambers placed hermetically on the field. For one incubation study, qPCR (qunatitative real time polymerase chain reaction) was additionally applied to determine the abundance of selected microbial groups. Moreover, for the field investigation the abundance of stable carbon isotopes (12C und 13C) in the soil and in the released CO2 was recorded, to differentiate between the degradation of the chars and the degradation of soil organic carbon, which might be affected by the presence of chars (priming). The results confirm the higher stability of both chars in comparison to the feedstock, in particular for pyrolysis char, whose decay was the slowest both in the laboratory and in the field. The degradability of both chars decreased with their ageing. Based on the decay rates in the second year of the field investigation, decay half-lives for pyrolysis char and HTC char amounted respectively to 81 years and 60 years. Other than pyrolysis char, the degradation of HTC char revealed a more complex dynamics, which was accompanied by a shift of the microbial community within the 10 days incubation. During the first year of the field experiment, an intensive release of volatile and labile compounds took place, which led to an increased stability during the following year. A post-treatment of the chars via anaerobic fermentation led to a reduction in the initial degasing of the HTC char, both in the laboratory and in the field, but also to a decrease in stability for both chars: the calculated half-lives for fermented pyrolysis char and fermented HTC char on the basis of the second year of the field investigation were respectively 14 years and 13 years. The effects of the untreated chars on the abundance of the selected microbial groups in the carbon-poor soil used was also strongly reduced in comparison to the feedstock, while in a situation of carbon abundance a inhibition of the activity increase took place. Addition of readily available carbon in the form of glucose increased soil respiration tremendously and magnified the variation amplitude of the microbial community, which was however much reduced in the presence of chars. Instead, after addition of mineral nitrogen in presence of chars, no significant variation in the soil respiration could be observed. The incubation experiments made it possible to report the short-term dynamics of the soil respiration and the adaptation of the microbial community after application of char and additional carbon and nitrogen sources. In the field experiment the decay dynamics of char compounds could be investigated in a situation of common agricultural practice and the measurement of stable isotopes has given differentiated outcomes about the long-term stability of the added chars and of the soil organic matter. Storage of carbon in the soil in the form of char for a long period is possible. How long carbon can actually be stored depends on a number of factors such as the feedstock, the carbonisation process parameters, the interactions between char particles and soil microorganisms and the duration of the investigation itself. Short-term experiments represent a good possibility to highlight the effects of modified soil conditions, while the stability of char in soil and thus the potential carbon sequestration can be estimate in the most reliable way only through long-term studies in field.
 
Files in this item
Thumbnail
lanza.pdf — Adobe PDF — 2.683 Mb
MD5: 10469a08dedf9d8e9a036decdc036943
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/18410
Permanent URL
https://doi.org/10.18452/18410
HTML
<a href="https://doi.org/10.18452/18410">https://doi.org/10.18452/18410</a>