Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2016-11-07Diskussionspapier DOI: 10.18452/18423
Time Varying Quantile Lasso
Zbonakova, Lenka
Härdle, Wolfgang Karl cc
Wang, Weining
Wirtschaftswissenschaftliche Fakultät
In the present paper we study the dynamics of penalization parameter ? of the least absolute shrinkage and selection operator (Lasso) method proposed by Tibshirani (1996) and extended into quantile regression context by Li and Zhu (2008). The dynamic behaviour of the parameter ? can be observed when the model is assumed to vary over time and therefore the fitting is performed with the use of moving windows. The proposal of investigating time series of ? and its dependency on model characteristics was brought into focus by H¨ardle et al. (2016), which was a foundation of FinancialRiskMeter (http://frm.wiwi.hu-berlin.de). Following the ideas behind the two aforementioned projects, we use the derivation of the formula for the penalization parameter ? as a result of the optimization problem. This reveals three possible effects driving ?; variance of the error term, correlation structure of the covariates and number of nonzero coefficients of the model. Our aim is to disentangle these three effect and investigate their relationship with the tuning parameter ?, which is conducted by a simulation study. After dealing with the theoretical impact of the three model characteristics on ?, empirical application is performed and the idea of implementing the parameter ? into a systemic risk measure is presented. The codes used to obtain the results included in this work are available on http://quantlet.de/d3/ia/.
Files in this item
Thumbnail
2016-047.pdf — Adobe PDF — 2.300 Mb
MD5: 35db0d339c0e080f09b56f6cdbae1adc
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/18423
Permanent URL
https://doi.org/10.18452/18423
HTML
<a href="https://doi.org/10.18452/18423">https://doi.org/10.18452/18423</a>