Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2016-12-29Diskussionspapier DOI: 10.18452/18558
Dynamic credit default swaps curves in a network topology
Xu, Xiu
Chen, Cathy Yi-Hsuan
Härdle, Wolfgang Karl cc
Wirtschaftswissenschaftliche Fakultät
Systemically important banks are connected and have dynamic dependencies of their default probabilities. An extraction of default factors from cross-sectional credit default swaps (CDS) curves allows to analyze the shape and the dynamics of the default probabilities. Extending the Dynamic Nelson Siegel (DNS) model, we propose a network DNS model to analyze the interconnectedness of default factors in a dynamic fashion, and forecast the CDS curves. The extracted level factors representing long-term default risk demonstrate 85.5% total connectedness, while the slope and the curvature factors document 79.72% and 62.94% total connectedness for the short-term and middle-term default risk, respectively. The issues of default spillover and systemic risk should be weighted for the market participants with longer credit exposures, and for regulators with a mission to stabilize financial markets. The US banks contribute more to the long-run default spillover before 2012, whereas the European banks are major default transmitters during and after the European debt crisis either in the long-run or short-run. The outperformance of the network DNS model indicates that the prediction on CDS curve requires network information.
Files in this item
Thumbnail
2016-059.pdf — Adobe PDF — 2.715 Mb
MD5: 0a19839cdac496179895ed1e6b931d47
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/18558
Permanent URL
https://doi.org/10.18452/18558
HTML
<a href="https://doi.org/10.18452/18558">https://doi.org/10.18452/18558</a>