Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • kunsttexte.de - E-Journal für Kunst- und Bildgeschichte
  • Renaissance
  • Ausgabe 4.2017 / Renaissance
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • kunsttexte.de - E-Journal für Kunst- und Bildgeschichte
  • Renaissance
  • Ausgabe 4.2017 / Renaissance
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • kunsttexte.de - E-Journal für Kunst- und Bildgeschichte
  • Renaissance
  • Ausgabe 4.2017 / Renaissance
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • kunsttexte.de - E-Journal für Kunst- und Bildgeschichte
  • Renaissance
  • Ausgabe 4.2017 / Renaissance
  • View Item
2017Zeitschriftenartikel DOI: 10.18452/18693
Dream Formulations and Deep Neural Networks: Humanistic Themes in the Iconology of the Machine-Learned Image
Spratt, Emily L.
Princeton University
This paper addresses the interpretability of deep learning-enabled image recognition processes in computer vision science in relation to theories in art history and cognitive psychology on the vision-related perceptual capabilities of humans. Examination of what is determinable about the machine-learned image in comparison to humanistic theories of visual perception, particularly in regard to art historian Erwin Panofsky’s methodology for image analysis and psychologist Eleanor Rosch’s theory of graded categorization according to prototypes, finds that there are surprising similarities between the two that suggest that researchers in the arts and the sciences would have much to benefit from closer collaborations. Utilizing the examples of Google’s DeepDream and the Machine Learning and Perception Lab at Georgia Tech’s Grad-CAM: Gradient-weighted Class Activation Mapping programs, this study suggests that a revival of art historical research in iconography and formalism in the age of AI is essential for shaping the future navigation and interpretation of all machine-learned images, given the rapid developments in image recognition technologies.
Files in this item
Thumbnail
Spratt - final.pdf — Adobe PDF — 690.1 Kb
MD5: be3bd6cda177471003c809f5eef01d49
Cite
BibTeX
EndNote
RIS
(CC BY-SA 3.0 DE) Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland(CC BY-SA 3.0 DE) Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland(CC BY-SA 3.0 DE) Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/18693
Permanent URL
https://doi.org/10.18452/18693
HTML
<a href="https://doi.org/10.18452/18693">https://doi.org/10.18452/18693</a>