Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2018-02-12Dissertation DOI: 10.18452/18793
Nonlinear signal processing by noisy spiking neurons
Voronenko, Sergej Olegovic
Mathematisch-Naturwissenschaftliche Fakultät
Neurone sind anregbare Zellen, die mit Hilfe von elektrischen Signalen miteinander kommunizieren. Im allgemeinen werden eingehende Signale von den Nervenzellen in einer nichtlinearen Art und Weise verarbeitet. Wie diese Verarbeitung in einer umfassenden und exakten Art und Weise mathematisch beschrieben werden kann, ist bis heute nicht geklärt und ist Gegenstand aktueller Forschung. In dieser Arbeit untersuchen wir die nichtlineare Übertragung und Verarbeitung von Signalen durch stochastische Nervenzellen und wenden dabei zwei unterschiedliche Herangehensweisen an. Im ersten Teil der Arbeit befassen wir uns mit der Frage, auf welche Art und Weise ein Signal mit einer bekannten Zeitabhängigkeit die Rate der neuronalen Aktivität beeinflusst. Im zweiten Teil der Arbeit widmen wir uns der Rekonstruktion eingehender Signale aus der durch sie hervorgerufenen neuronalen Aktivität und beschäftigen uns mit der Abschätzung der übertragenen Informationsmenge. Die Ergebnisse dieser Arbeit demonstrieren, wie die etablierten linearen Theorien, die die Modellierung der neuronalen Aktivitätsrate bzw. die Rekonstruktion von Signalen beschreiben, um Beiträge höherer Ordnung erweitert werden können. Einen wichtigen Beitrag dieser Arbeit stellt allerdings auch die Darstellung der Signifikanz der nichtlinearen Theorien dar. Die nichtlinearen Beiträge erweisen sich nicht nur als schwache Korrekturen zu den etablierten linearen Theorien, sondern beschreiben neuartige Effekte, die durch die linearen Theorien nicht erfasst werden können. Zu diesen Effekten gehört zum Beispiel die Anregung von harmonischen Oszillationen der neuronalen Aktivitätsrate und die Kodierung von Signalen in der signalabhängigen Varianz einer Antwortvariablen.
 
Neurons are excitable cells which communicate with each other via electrical signals. In general, these signals are processed by the Neurons in a nonlinear fashion, the exact mathematical description of which is still an open problem in neuroscience. In this thesis, the broad topic of nonlinear signal processing is approached from two directions. The first part of the thesis is devoted to the question how input signals modulate the neural response. The second part of the thesis is concerned with the nonlinear reconstruction of input signals from the neural output and with the estimation of the amount of the transmitted information. The results of this thesis demonstrate how existing linear theories can be extended to capture nonlinear contributions of the signal to the neural response or to incorporate nonlinear correlations into the estimation of the transmitted information. More importantly, however, our analysis demonstrates that these extensions do not merely provide small corrections to the existing linear theories but can account for qualitatively novel effects which are completely missed by the linear theories. These effects include, for example, the excitation of harmonic oscillations in the neural firing rate or the estimation of information for systems with a signal-dependent output variance.
 
Files in this item
Thumbnail
dissertation_voronenko_sergej.pdf — Adobe PDF — 3.295 Mb
MD5: b002e8ac018342c5ae14924478fd2a4f
Cite
BibTeX
EndNote
RIS
(CC BY-NC 3.0 DE) Namensnennung - Nicht kommerziell 3.0 Deutschland(CC BY-NC 3.0 DE) Namensnennung - Nicht kommerziell 3.0 Deutschland(CC BY-NC 3.0 DE) Namensnennung - Nicht kommerziell 3.0 Deutschland
Details

Related Items

Show related Items with similar Title, Author, Creator or Subject.

  • 2017-08-03Dissertation
    Nonlocal and Nonlinear Properties of Plasmonic Nanostructures Within the Hydrodynamic Drude Model 
    Moeferdt, Matthias
    In dieser Arbeit werden die nichtlokalen sowie nichtlinearen Eigenschaften plasmonischer Nanopartikel behandelt, wie sie im hydrodynamischen Modell enthalten sind. Das hydrodynamische Materialmodell stellt eine Erweiterung ...
  • 2019-09-05Dissertation
    Essays on monetary macroeconomics 
    Almosova, Anna
    Diese Dissertation beschäftigt sich mit drei relevanten Aufgabebereichen einer Zentralbank und untersucht die makroökonomische Prognose, die Analyse der Geldpolitik in einem makroökonomischen Modell und die Analyse des ...
  • 2016-05-12Dissertation
    Determinism and predictability in extreme event systems 
    Birkholz, Simon
    In den vergangenen Jahrzehnten wurden extreme Ereignisse, die nicht durch Gauß-Verteilungen beschrieben werden können, in einer Vielzahl an physikalischen Systemen beobachtet. Während statistische Methoden eine zuverlässige ...
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/18793
Permanent URL
https://doi.org/10.18452/18793
HTML
<a href="https://doi.org/10.18452/18793">https://doi.org/10.18452/18793</a>