Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2016-11-28Zeitschriftenartikel DOI: 10.18452/18856
A network-based approach for semi-quantitative knowledge mining and its application to yield variability
Schauberger, Bernhard cc
Rolinski, Susanne
Müller, Christoph cc
Lebenswissenschaftliche Fakultät
Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. Asystematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement.We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield.Weutilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield.Wecan identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions.Weshow the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.
Files in this item
Thumbnail
Schauberger_2016_Environ._Res._Lett._11_123001.pdf — Adobe PDF — 1.475 Mb
MD5: 5ef4b7d22d9536b04efc8d0f347374c8
Notes
Nachgenutzt gemäß den CC-Bestimmungen des Lizenzgebers bzw. einer im Dokument selbst enthaltenen CC-Lizenz.
Cite
BibTeX
EndNote
RIS
(CC BY 3.0) Attribution 3.0 Unported(CC BY 3.0) Attribution 3.0 Unported
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/18856
Permanent URL
https://doi.org/10.18452/18856
HTML
<a href="https://doi.org/10.18452/18856">https://doi.org/10.18452/18856</a>