Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2018-04-18Dissertation DOI: 10.18452/19123
Wave Invariants on Flat Tori
Berg, Tillmann
Mathematisch-Naturwissenschaftliche Fakultät
Wir untersuchen und berechnen Welleninvarianten von Schrödinger-Operatoren, die auf Schnitte von Hermiteschen Geradenbündeln über flachen Tori gerader Dimension wirken. Die Schrödinger-Operatoren werden aus einem translationsinvarianten Zusammenhang des Bündels sowie einem Potential, d.h. einer glatten Funktion auf dem Torus, konstruiert. Wir beschränken uns auf Bündel mit nichtentarteter Chern-Klasse und untersuchen, in welchem Umfang das Spektrum eines Schrödinger-Operators mit gegebenem Potential den Zusammenhang bestimmt. Wir berechnen die ersten fünf Welleninvarianten explizit mittels des Computeralgebrasystems Mathematica. Für einfache Potentiale erhalten wir eine vollständige Charakterisierung der Isospektralität der translationsinvarianten Zusammenhänge. Weiterhin werden allgemeine Eigenschaften der Welleninvarianten bewiesen, welche allgemeinere Aussagen über die Existenz nichtisospektraler Zusammenhänge implizieren. Andererseits ergeben sich Erkenntnisse über die Grenzen der spektralen Information, die in endlich vielen Welleninvarianten enthalten ist. Negative spektrale Ergebnisse, d.h. Unterschiede in den Zusammenhängen, die nicht durch das Spektrum bestimmt werden, werden durch die Konstruktion von Transplantationen zwischen den Schrödinger-Operatoren zweier Zusammenhänge bei gleichem Potential bewiesen.
 
We study and compute wave invariants of Schrödinger operators acting on sections of Hermitian line bundles over even-dimensional flat tori. The Schrödinger operators are constructed from translation-invariant connections on the bundle and a potential, a smooth function on the torus. Restricting to bundles with nondegenerate Chern class we study the extent to which the spectrum of the Schrödinger operator of a given potential determines the connection. The first five wave invariants are computed explicitly using the computer algebra software Mathematica. For simple potentials we find a full characterization of the isospectrality of the translation-invariant connections. We also prove general properties of the wave invariants, which imply a more general existence of nonisospectral connections but which also show limitations of the spectral information contained within finitely many wave invariants. Negative spectral results, i.e. differences in connections not determined by spectra, are obtained by constructing transplantations between the Schrödinger operators of two connections with a fixed potential.
 
Files in this item
Thumbnail
dissertation_berg_tillmann.pdf — Adobe PDF — 1.987 Mb
Dissertation
MD5: ad44a7ff931eaf9a088de0c1cc2694c4
dissertation_berg_tillmann_literaturliste.bib — Unknown — 7.079 Kb
Literaturliste im Bibtex-Format
MD5: e1636836f8378b607d27cbad9bcde1be
References
Has Part: https://doi.org/10.18452/18970
Cite
BibTeX
EndNote
RIS
(CC BY 3.0 DE) Namensnennung 3.0 Deutschland(CC BY 3.0 DE) Namensnennung 3.0 Deutschland
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/19123
Permanent URL
https://doi.org/10.18452/19123
HTML
<a href="https://doi.org/10.18452/19123">https://doi.org/10.18452/19123</a>