Logo der Humboldt-Universität zu BerlinLogo der Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Banner: Fassade der Humboldt-Universität zu Berlin
Publikation anzeigen 
  • edoc-Server Startseite
  • Qualifikationsarbeiten
  • Dissertationen
  • Publikation anzeigen
  • edoc-Server Startseite
  • Qualifikationsarbeiten
  • Dissertationen
  • Publikation anzeigen
JavaScript is disabled for your browser. Some features of this site may not work without it.
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Publikation anzeigen 
  • edoc-Server Startseite
  • Qualifikationsarbeiten
  • Dissertationen
  • Publikation anzeigen
  • edoc-Server Startseite
  • Qualifikationsarbeiten
  • Dissertationen
  • Publikation anzeigen
2018-08-09Dissertation DOI: 10.18452/19325
Anion Conducting Channelrhodopsins
Wietek, Jonas
Mathematisch-Naturwissenschaftliche Fakultät
Seit mehr als 10 Jahren kann biologische Aktivität durch eine Vielzahl photosensorischer Proteine beeinflusst werden. In diesem als Optogenetik bezeichneten Forschungsgebiet, werden Kationen leitende Kanalrhodopsine (CCRs) als lichtinduzierte neuronale Aktivatoren eingesetzt. Diese Arbeit soll zur Vervollständigung von optogenetischen Werkzeugen durch die Entwicklung Anionen leitender Kanalrhodopsine (ACRs) dienen, um die bestehenden Nachteile mikrobieller lichtgetriebener Ionenpumpen zu überwinden, die bislang zur neuronale Inhibition genutzt wurden. Der Austausch von E90 in C. reinhardtii Kanalrhodopsin 2 (CrChR2) durch positiv geladene Aminosäuren führte zu Entwicklung Chlorid leitender ChRs (ChloCs), die jedoch eine Restkationen-permeabilität aufwiesen. Durch Substitution zweier weiterer negativen Ladungen innerhalb des Ionenpermeationsweges, konnte die Kationenleitung vollständig aufgehoben werden. Parallel wurde durch A. Berndt et al. ein inhibitorisches C1C2 (iC1C2), basierend auf der CrChR1/2 Chimäre entwickelt. Wie auch bei den ChloCs, zeigte iC1C2 verbesserungswürdige biophysikalische Eigenschaften. Mutagenesestudien des Ionenpermeationsweges führten zur Entwicklung der verbesserten Nachfolgervariante iC++. Um ausgehend von weiteren CCRs neuartige ACRs zu entwickeln (eACRs), wurden die zuvor angewandten Mutagenesestrategien auf weitere CCRs übertragen. Zwei neue eACRs, Phobos und Aurora, mit jeweils blau- und rotverschobenen Aktionsspektrum konnten generiert werden. Bistabile eACRs wurden erzeugt, die ein lichtgesteuertes Schalten zwischen offenen und geschlossenen Zuständen ermöglichen. Schlussendlich wurde ein natürlich vorkommendes ACR (nACR) aus Proteomonas sulcata (PsACR1) identifiziert und charakterisiert. Die Maximalaktivität von PsACR1 zählt mit 540 nm zu den am stärksten rotverschobenen unter den nACRs. Elektrophysiologische und spektroskopische Untersuchungen ergaben, dass sich der Photozyklus von PsACR1 signifikant von jenen der CCRs unterscheidet.
 
For more than 10 years, photosensory proteins have developed as powerful tools to manipulate biological activity. In this research field termed optogenetics, cation-conducting channelrhodopsins (CCRs) mainly are utilized as light-induced neural activators. This study aimed at a complementation of the optogenetic tool box by engineering anion-conducting channelrhodopsins (ACRs) to overcome the existing drawbacks of microbial light-driven ion pumps utilized for neural inhibition so far. Replacement of E90 in the cation-conducting C. reinhardtii channelrhodopsin 2 (CrChR2) with positively charged residues reversed the ion selectivity and yielded chloride-conducting ChRs (ChloCs). Applied in neuronal cell culture, ChloCs showed residual cation permeability occasionally leading to excitation instead of the desired inhibition. Further charge elimination within the ion permeation pathway completely abolished cation conduction. In parallel, an inhibitory C1C2 (iC1C2) was developed by A. Berndt et al. based on a CrChR1/2 chimera. Though, iC1C2 displayed unsatisfactory biophysical properties as well. Further mutational modifications of the ion permeation pathway led to the development of the improved successor variant iC++. A systematic transfer of both conversion strategies to other CCRs was conducted to create engineered ACRs (eACRs) with distinct biophysical properties. Two novel eACRs, Phobos and Aurora, with blue- and red-shifted action were obtained. Additionally, step-function mutations greatly enhanced the operational light sensitivity and enabled temporally precise toggling between open and closed states using two different light colors. Finally, a natural ACR (nACR) originating from Proteomonas sulcata (PsACR1) was identified and characterized. With a maximum activation at 540 nm it is one of most red-shifted nACRs. Single turnover electrophysiological measurements and spectroscopic investigations revealed an unusual photocycle compared to that of CCRs.
 
Dateien zu dieser Publikation
Thumbnail
dissertation_wietek_jonas.pdf — PDF — 24.26 Mb
MD5: f92ceee2100b0e923ca8a8c2dab71d97
Zitieren
BibTeX
EndNote
RIS
(CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland(CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland(CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland(CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland
Zur Langanzeige
Impressum Leitlinien Kontakt Datenschutzerklärung
Ein Service der Universitätsbibliothek und des Computer- und Medienservice
© Humboldt-Universität zu Berlin
 
DOI
10.18452/19325
Permanent URL
https://doi.org/10.18452/19325
HTML
<a href="https://doi.org/10.18452/19325">https://doi.org/10.18452/19325</a>