Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2018-12-12Dissertation DOI: 10.18452/19609
On Invariant Formulae of First-Order Logic with Numerical Predicates
Harwath, Frederik
Mathematisch-Naturwissenschaftliche Fakultät
Diese Arbeit untersucht ordnungsinvariante Formeln der Logik erster Stufe (FO) und einiger ihrer Erweiterungen, sowie andere eng verwandte Konzepte der endlichen Modelltheorie. Viele Resultate der endlichen Modelltheorie nehmen an, dass Strukturen mit einer Einbettung ihres Universums in ein Anfangsstück der natürlichen Zahlen ausgestattet sind. Dies erlaubt es, beliebige Relationen (z.B. die lineare Ordnung) und Operationen (z.B. Addition, Multiplikation) von den natürlichen Zahlen auf solche Strukturen zu übertragen. Die resultierenden Relationen auf den endlichen Strukturen werden als numerische Prädikate bezeichnet. Werden numerische Prädikate in Formeln verwendet, beschränkt man sich dabei häufig auf solche Formeln, deren Wahrheitswert auf endlichen Strukturen invariant unter Änderungen der Einbettung der Strukturen ist. Wenn das einzige verwendete numerische Prädikat eine lineare Ordnung ist, spricht man beispielsweise von ordnungsinvarianten Formeln. Die Resultate dieser Arbeit können in drei Teile unterteilt werden. Der erste Teil betrachtet die Lokalitätseigenschaften von FO-Formeln mit Modulo-Zählquantoren, die beliebige numerische Prädikate invariant nutzen. Der zweite Teil betrachtet FO-Sätze, die eine lineare Ordnung samt der zugehörigen Addition auf invariante Weise nutzen, auf endlichen Bäumen. Es wird gezeigt, dass diese dieselben regulären Baumsprachen definieren, wie FO-Sätze ohne numerische Prädikate mit bestimmten Kardinalitätsprädikaten. Für den Beweis wird eine algebraische Charakterisierung der in dieser Logik definierbaren Baumsprachen durch Operationen auf Bäumen entwickelt. Der dritte Teil der Arbeit beschäftigt sich mit der Ausdrucksstärke und der Prägnanz von FO und Erweiterungen von FO auf Klassen von Strukturen beschränkter Baumtiefe.
 
This thesis studies the concept of order-invariance of formulae of first-order logic (FO) and some of its extensions as well as other closely related concepts from finite model theory. Many results in finite model theory assume that structures are equipped with an embedding of their universe into an initial segment of the natural numbers. This allows to transfer arbitrary relations (e.g. linear order) and operations (e.g. addition, multiplication) on the natural numbers to structures. The arising relations on the structures are called numerical predicates. If formulae use these numerical predicates, it is often desirable to consider only such formulae whose truth value in finite structures is invariant under changes to the embeddings of the structures. If the numerical predicates include only a linear order, such formulae are called order-invariant. We study the effect of the invariant use of different kinds of numerical predicates on the expressive power of FO and extensions thereof. The results of this thesis can be divided into three parts. The first part considers the locality and non-locality properties of formulae of FO with modulo-counting quantifiers which may use arbitrary numerical predicates in an invariant way. The second part considers sentences of FO which may use a linear order and the corresponding addition in an invariant way and obtains a characterisation of the regular finite tree languages which can be defined by such sentences: these are the same tree languages which are definable by FO-sentences without numerical predicates with certain cardinality predicates. For the proof, we obtain a characterisation of the tree languages definable in this logic in terms of algebraic operations on trees. The third part compares the expressive power and the succinctness of different ex- tensions of FO on structures of bounded tree-depth.
 
Files in this item
Thumbnail
dissertation_harwath_frederik.pdf — Adobe PDF — 1.606 Mb
MD5: db1ea72959e59ee91c902f02a66c9c0e
Cite
BibTeX
EndNote
RIS
(CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland(CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland(CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland(CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/19609
Permanent URL
https://doi.org/10.18452/19609
HTML
<a href="https://doi.org/10.18452/19609">https://doi.org/10.18452/19609</a>