Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Tagungs- und Konferenzbände
  • Everything Changes, Everything Stays the Same? Understanding Information Spaces. Proceedings of the 15th International Symposium of Information Science (ISI 2017)
  • View Item
  • edoc-Server Home
  • Tagungs- und Konferenzbände
  • Everything Changes, Everything Stays the Same? Understanding Information Spaces. Proceedings of the 15th International Symposium of Information Science (ISI 2017)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Tagungs- und Konferenzbände
  • Everything Changes, Everything Stays the Same? Understanding Information Spaces. Proceedings of the 15th International Symposium of Information Science (ISI 2017)
  • View Item
  • edoc-Server Home
  • Tagungs- und Konferenzbände
  • Everything Changes, Everything Stays the Same? Understanding Information Spaces. Proceedings of the 15th International Symposium of Information Science (ISI 2017)
  • View Item
2017-03-24Konferenzveröffentlichung DOI: 10.18452/1441
Stereotype and Most-Popular Recommendations in the Digital Library Sowiport
Beel, Joeran
Dinesh, Siddharth
Mayr, Philipp
Carevic, Zeljko
Raghvendra, Jain
Philosophische Fakultät
Stereotype and most-popular recommendations are widely neglected in the research-paper recommender system and digital-library community. In other domains such as movie recommendations and hotel search, however, these recommendation approaches have proven their effectiveness. We were interested to find out how stereotype and most-popular recommendations would perform in the scenario of a digital library. Therefore, we implemented the two approaches in the recommender system of GESIS’ digital library Sowiport, in cooperation with the recommendations-as-a-service provider Mr. DLib. We measured the effectiveness of most-popular and stereotype recommendations with click-through rate (CTR) based on 28 million delivered recommendations. Most-popular recommendations achieved a CTR of 0.11%, and stereotype recommendations achieved a CTR of 0.124%. Compared to a “random recommendations” baseline (CTR 0.12%), and a content based filtering baseline (CTR 0.145%), the results are discouraging. However, for reasons explained in the paper, we concluded that more research is necessary about the effectiveness of stereotype and most-popular recommendations in digital libraries.
Files in this item
Thumbnail
beel.pdf — Adobe PDF — 2.018 Mb
MD5: eb63fda2d354fcca0b5835fe2231b0cf
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/1441
Permanent URL
https://doi.org/10.18452/1441
HTML
<a href="https://doi.org/10.18452/1441">https://doi.org/10.18452/1441</a>