Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Tagungs- und Konferenzbände
  • Everything Changes, Everything Stays the Same? Understanding Information Spaces. Proceedings of the 15th International Symposium of Information Science (ISI 2017)
  • View Item
  • edoc-Server Home
  • Tagungs- und Konferenzbände
  • Everything Changes, Everything Stays the Same? Understanding Information Spaces. Proceedings of the 15th International Symposium of Information Science (ISI 2017)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Tagungs- und Konferenzbände
  • Everything Changes, Everything Stays the Same? Understanding Information Spaces. Proceedings of the 15th International Symposium of Information Science (ISI 2017)
  • View Item
  • edoc-Server Home
  • Tagungs- und Konferenzbände
  • Everything Changes, Everything Stays the Same? Understanding Information Spaces. Proceedings of the 15th International Symposium of Information Science (ISI 2017)
  • View Item
2017-03-24Konferenzveröffentlichung DOI: 10.18452/1443
Text Mining for User Query Analysis
A 5-Step Method for Cultural Heritage Institutions
Chardonnens, Anne
Hengchen, Simon
Philosophische Fakultät
The recent development of Web Analytics offers new perspectives to libraries, archives and museums to improve their knowledge of user needs and behaviours. In order to dive into the mind of their end users, institutions can explore queries from a digital catalogue. However, a manual exploration demands a major time commitment and only leads to limited results. This paper explores how text mining techniques can help automate the analysis of large volumes of log files. A 5-step methodology including clustering is illustrated by a case study from the State Archives of Belgium.
Files in this item
Thumbnail
chardonnens.pdf — Adobe PDF — 230.2 Kb
MD5: 4c281f2ebd7a495184210b074c7096c0
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/1443
Permanent URL
https://doi.org/10.18452/1443
HTML
<a href="https://doi.org/10.18452/1443">https://doi.org/10.18452/1443</a>