Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2019-02-18Zeitschriftenartikel DOI: 10.18452/20246
Finding the Optimal Imputation Strategy for Small Cattle Populations
Korkuć, Paula
Arends, Danny cc
Brockmann, Gudrun A cc
Lebenswissenschaftliche Fakultät
The imputation from lower density SNP chip genotypes to whole-genome sequence level is an established approach to generate high density genotypes for many individuals. Imputation accuracy is dependent on many factors and for small cattle populations such as the endangered German Black Pied cattle (DSN), determining the optimal imputation strategy is especially challenging since only a low number of high density genotypes is available. In this paper, the accuracy of imputation was explored with regard to (1) phasing of the target population and the reference panel for imputation, (2) comparison of a 1-step imputation approach, where 50 k genotypes are directly imputed to sequence level, to a 2-step imputation approach that used an intermediate step imputing first to 700 k and subsequently to sequence level, (3) the software tools Beagle and Minimac, and (4) the size and composition of the reference panel for imputation. Analyses were performed for 30 DSN and 30 Holstein Frisian cattle available from the 1000 Bull Genomes Project. Imputation accuracy was assessed using a leave-one-out cross validation procedure. We observed that phasing of the target populations and the reference panels affects the imputation accuracy significantly. Minimac reached higher accuracy when imputing using small reference panels, while Beagle performed better with larger reference panels. In contrast to previous research, we found that when a low number of animals is available at the intermediate imputation step, the 1-step imputation approach yielded higher imputation accuracy compared to a 2-step imputation. Overall, the size of the reference panel for imputation is the most important factor leading to higher imputation accuracy, although using a larger reference panel consisting of a related but different breed (Holstein Frisian) significantly reduced imputation accuracy. Our findings provide specific recommendations for populations with a limited number of high density genotyped or sequenced animals available such as DSN. The overall recommendation when imputing a small population are to (1) use a large reference panel of the same breed, (2) use a large reference panel consisting of diverse breeds, or (3) when a large reference panel is not available, we recommend using a smaller same breed reference panel without including a different related breed.
Files in this item
Thumbnail
fgene-10-00052.pdf — Adobe PDF — 2.687 Mb
MD5: bb3dd77ee266f533e6c5faf6014cd41c
Notes
This article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin.
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/20246
Permanent URL
https://doi.org/10.18452/20246
HTML
<a href="https://doi.org/10.18452/20246">https://doi.org/10.18452/20246</a>