Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2018-07-15Zeitschriftenartikel DOI: 10.3390/rs10071120
Understanding Forest Health with Remote Sensing, Part III: Requirements for a Scalable Multi-Source Forest Health Monitoring Network Based on Data Science Approaches
Lausch, Angela cc
Borg, Erik
Bumberger, Jan
Dietrich, Peter cc
Heurich, Marco
Huth, Andreas
Jung, András cc
Klenke, Reinhard cc
Knapp, Sonja cc
Mollenhauer, Hannes cc
Paasche, Hendrik
Paulheim, Heiko cc
Pause, Marion cc
Schweitzer, Christian
Schmulius, Christiane
Settele, Josef
Skidmore, Andrew K.
Wegmann, Martin cc
Zacharias, Steffen cc
Kirsten, Toralf
Schaepman, Michael cc
Mathematisch-Naturwissenschaftliche Fakultät
Forest ecosystems fulfill a whole host of ecosystem functions that are essential for life on our planet. However, an unprecedented level of anthropogenic influences is reducing the resilience and stability of our forest ecosystems as well as their ecosystem functions. The relationships between drivers, stress, and ecosystem functions in forest ecosystems are complex, multi-faceted, and often non-linear, and yet forest managers, decision makers, and politicians need to be able to make rapid decisions that are data-driven and based on short and long-term monitoring information, complex modeling, and analysis approaches. A huge number of long-standing and standardized forest health inventory approaches already exist, and are increasingly integrating remote-sensing based monitoring approaches. Unfortunately, these approaches in monitoring, data storage, analysis, prognosis, and assessment still do not satisfy the future requirements of information and digital knowledge processing of the 21st century. Therefore, this paper discusses and presents in detail five sets of requirements, including their relevance, necessity, and the possible solutions that would be necessary for establishing a feasible multi-source forest health monitoring network for the 21st century. Namely, these requirements are: (1) understanding the effects of multiple stressors on forest health; (2) using remote sensing (RS) approaches to monitor forest health; (3) coupling different monitoring approaches; (4) using data science as a bridge between complex and multidimensional big forest health (FH) data; and (5) a future multi-source forest health monitoring network. It became apparent that no existing monitoring approach, technique, model, or platform is sufficient on its own to monitor, model, forecast, or assess forest health and its resilience. In order to advance the development of a multi-source forest health monitoring network, we argue that in order to gain a better understanding of forest health in our complex world, it would be conducive to implement the concepts of data science with the components: (i) digitalization; (ii) standardization with metadata management after the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles; (iii) Semantic Web; (iv) proof, trust, and uncertainties; (v) tools for data science analysis; and (vi) easy tools for scientists, data managers, and stakeholders for decision-making support.
Files in this item
Thumbnail
remotesensing-10-01120-v2.pdf — Adobe PDF — 21.40 Mb
MD5: 76ef606280eff0a8c6c81b296004c2fb
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details

Related Items

Show related Items with similar Title, Author, Creator or Subject.

  • 2018-12-11Dissertation
    Standortspezifische Entwicklung von Buchenwaldgesellschaften im nordostdeutschen Tiefland, dargestellt am Beispiel des Melzower Buchennaturwaldes 
    Rüffer, Olaf
    Gegenstand der Dissertation bildet eine echte Zeitreihenuntersuchung eines Tiefland-Buchenwaldes im nordostdeutschen Tiefland. Dieser Wald wurde Ende der 1920er Jahre aus der forstlichen Nutzung entlassen und entstand aus ...
  • 2021-07-21Zeitschriftenartikel
    Proximate Causes of Forest Degradation in the Democratic Republic of the Congo Vary in Space and Time 
    Shapiro, Aurélie; Bernhard, Katie P.; Zenobi, Stefano; Müller, Daniel; Aguilar-Amuchastegui, Naikoa; d'Annunzio, Rémi
    Forest degradation, generally defined as a reduction in the delivery of forest ecosystem services, can have long-term impacts on biodiversity, climate, and local livelihoods. The quantification of forest degradation, its ...
  • 2019-05-20Zeitschriftenartikel
    Forest Stand Species Mapping Using the Sentinel-2 Time Series 
    Grabska, Ewa; Hostert, Patrick; Pflugmacher, Dirk; Ostapowicz, Katarzyna
    Accurate information regarding forest tree species composition is useful for a wide range of applications, both for forest management and scientific research. Remote sensing is an efficient tool for collecting spatially ...
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.3390/rs10071120
Permanent URL
https://doi.org/10.3390/rs10071120
HTML
<a href="https://doi.org/10.3390/rs10071120">https://doi.org/10.3390/rs10071120</a>