Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften
  • SiAg Working Papers
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften
  • SiAg Working Papers
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften
  • SiAg Working Papers
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften
  • SiAg Working Papers
  • View Item
2019-09-20Buch DOI: 10.18452/20558
Agricultural policy evaluation with large-scale observational farm data: Environmental impacts of agri-environmental schemes
Uehleke, Reinhard cc
Petrick, Martin cc
Hüttel, Silke cc
Lebenswissenschaftliche Fakultät
Agri-environmental schemes (AES) target at improving environmental status of cultivated land by remunerating farmers willing to commit to higher environmental standards. Thus far, no consensus exists whether AES incentivize adoption of pro-environmental production or simply offer windfall profits for those already operating at lower intensities. Using farm-level data, evaluation typically rests on comparing farms with and without AES. For differencing out unobservables that drive farmers into AES participation and therefore confound impact measurement, DID-matching methods are widespread, yet critical reflection remains sparse. We target at closing this gap by shedding light on the implicit assumptions about cause and effect paths linking participation and treatment outcome. We discuss challenges for identification of causal effects in presence of unobservable confounders over a broad range of methods and illustrate DID methods to estimate AES effects on land-use in West Germany.
Files in this item
Thumbnail
wp21.pdf — Adobe PDF — 1.800 Mb
MD5: 6d96fdfbfc0cb7696ecbeda2180c31a6
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/20558
Permanent URL
https://doi.org/10.18452/20558
HTML
<a href="https://doi.org/10.18452/20558">https://doi.org/10.18452/20558</a>