Show simple item record

2019-06-03Zeitschriftenartikel DOI: 10.18452/20607
Spatially distributed tracer-aided runoff modelling and dynamics of storage and water ages in a permafrost-influenced catchment
dc.contributor.authorPiovano, Thea Ilaria
dc.contributor.authorTetzlaff, Doerthe
dc.contributor.authorCarey, Sean
dc.contributor.authorShatilla, Nadine
dc.contributor.authorSmith, Aaron
dc.contributor.authorSoulsby, Chris
dc.date.accessioned2019-10-28T13:49:04Z
dc.date.available2019-10-28T13:49:04Z
dc.date.issued2019-06-03none
dc.identifier.issn1027-5606
dc.identifier.other10.5194/hess-23-2507-2019
dc.identifier.urihttp://edoc.hu-berlin.de/18452/21386
dc.description.abstractPermafrost strongly controls hydrological processes in cold regions. Our understanding of how changes in seasonal and perennial frozen ground disposition and linked storage dynamics affect runoff generation processes remains limited. Storage dynamics and water redistribution are influenced by the seasonal variability and spatial heterogeneity of frozen ground, snow accumulation and melt. Stable isotopes are potentially useful for quantifying the dynamics of water sources, flow paths and ages, yet few studies have employed isotope data in permafrost-influenced catchments. Here, we applied the conceptual model STARR (the Spatially distributed Tracer-Aided Rainfall–Runoff model), which facilitates fully distributed simulations of hydrological storage dynamics and runoff processes, isotopic composition and water ages. We adapted this model for a subarctic catchment in Yukon Territory, Canada, with a timevariable implementation of field capacity to include the influence of thaw dynamics. A multi-criteria calibration based on stream flow, snow water equivalent and isotopes was applied to 3 years of data. The integration of isotope data in the spatially distributed model provided the basis for quantifying spatio-temporal dynamics of water storage and ages, emphasizing the importance of thaw layer dynamics in mixing and damping the melt signal. By using the model conceptualization of spatially and temporally variable storage, this study demonstrates the ability of tracer-aided modelling to capture thaw layer dynamics that cause mixing and damping of the isotopic melt signal.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc550 Geowissenschaftennone
dc.titleSpatially distributed tracer-aided runoff modelling and dynamics of storage and water ages in a permafrost-influenced catchmentnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/21386-3
dc.identifier.doihttp://dx.doi.org/10.18452/20607
dc.type.versionpublishedVersionnone
local.edoc.container-titleHydrology and earth system sciences : HESS / European Geosciences Unionnone
local.edoc.pages17none
local.edoc.anmerkungThis article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin.none
local.edoc.type-nameZeitschriftenartikel
local.edoc.institutionMathematisch-Naturwissenschaftliche Fakultätnone
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-publisher-nameEGUnone
local.edoc.container-publisher-placeKatlenburg-Lindaunone
local.edoc.container-volume23none
local.edoc.container-issue6none
local.edoc.container-firstpage2507none
local.edoc.container-lastpage2523none
dc.description.versionPeer Reviewednone
dc.identifier.eissn1607-7938

Show simple item record