Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2017-06-29Zeitschriftenartikel DOI: 10.3389/fninf.2017.00044
SamuROI, a Python-Based Software Tool for Visualization and Analysis of Dynamic Time Series Imaging at Multiple Spatial Scales
Rueckl, Martin
Lenzi, Stephen C.
Moreno-Velasquez, Laura
Parthier, Daniel
Schmitz, Dietmar
Ruediger, Sten
Johenning, Friedrich W.
Mathematisch-Naturwissenschaftliche Fakultät
The measurement of activity in vivo and in vitro has shifted from electrical to optical methods. While the indicators for imaging activity have improved significantly over the last decade, tools for analysing optical data have not kept pace. Most available analysis tools are limited in their flexibility and applicability to datasets obtained at different spatial scales. Here, we present SamuROI (Structured analysis of multiple user-defined ROIs), an open source Python-based analysis environment for imaging data. SamuROI simplifies exploratory analysis and visualization of image series of fluorescence changes in complex structures over time and is readily applicable at different spatial scales. In this paper, we show the utility of SamuROI in Ca2+-imaging based applications at three spatial scales: the micro-scale (i.e., sub-cellular compartments including cell bodies, dendrites and spines); the meso-scale, (i.e., whole cell and population imaging with single-cell resolution); and the macro-scale (i.e., imaging of changes in bulk fluorescence in large brain areas, without cellular resolution). The software described here provides a graphical user interface for intuitive data exploration and region of interest (ROI) management that can be used interactively within Jupyter Notebook: a publicly available interactive Python platform that allows simple integration of our software with existing tools for automated ROI generation and post-processing, as well as custom analysis pipelines. SamuROI software, source code and installation instructions are publicly available on GitHub and documentation is available online. SamuROI reduces the energy barrier for manual exploration and semi-automated analysis of spatially complex Ca2+ imaging datasets, particularly when these have been acquired at different spatial scales.
Files in this item
Thumbnail
fninf-11-00044.pdf — Adobe PDF — 683.2 Kb
MD5: e4dbc47e001eeeae5c2cf8ed1b716681
fninf-11-00044-g001.tif — TIFF image — 1.078 Mb
MD5: 2d190d0d4c30154d3a2cde0d10cd0e28
fninf-11-00044-g002.tif — TIFF image — 2.313 Mb
MD5: 7f556acdebaa068941b999f03fa8fafb
fninf-11-00044-g003.tif — TIFF image — 2.095 Mb
MD5: 26d3124e9cd7166f18c7e2d62c2abeb2
fninf-11-00044-g004.tif — TIFF image — 3.512 Mb
MD5: c2199481551566074405b3cb552ad9b3
fninf-11-00044-g005.tif — TIFF image — 4.706 Mb
MD5: a5ca31bd056484a3fb60b4136da3738f
Cite
BibTeX
EndNote
RIS
(CC BY 4.0) Attribution 4.0 International(CC BY 4.0) Attribution 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.3389/fninf.2017.00044
Permanent URL
https://doi.org/10.3389/fninf.2017.00044
HTML
<a href="https://doi.org/10.3389/fninf.2017.00044">https://doi.org/10.3389/fninf.2017.00044</a>