Show simple item record

2018-07-27Zeitschriftenartikel DOI: 10.18452/21071
Two-sided variable inspection plans for arbitrary continuous populations with unknown distribution
dc.contributor.authorKössler, Wolfgang
dc.contributor.authorOtt, Janina
dc.date.accessioned2020-01-22T16:28:51Z
dc.date.available2020-01-22T16:28:51Z
dc.date.issued2018-07-27none
dc.identifier.other10.1007/s10182-018-00338-w
dc.identifier.urihttp://edoc.hu-berlin.de/18452/21823
dc.description.abstractThe ordinary variable inspection plans rely on the normality of the underlying populations. However, this assumption is vague or even not satisfied. Moreover, ordinary variable sampling plans are sensitive against deviations from the distribution assumption. Nonconforming items occur in the tails of the distribution. They can be approximated by a Generalized Pareto distribution (GPD). We investigate several estimates of their parameters according to their usefulness not only for the GPD, but also for arbitrary continuous distributions. The Likelihood Moment estimates (LME) of Zhang (2007) and the Bayesian estimate (ZSE) of Zhang and Stephens (2009) turn out to be the best for our purpose. Then we use these parameter estimates to estimate the fraction defective. The asymptotic normality of the LME (cf. Zhang, 2007) and of the fraction defective are used to construct the sampling plan. The difference to the sampling plans constructed in Kössler (1999, 2015) is that we now use the new parameter estimates. Moreover, in contrast to the aforementioned papers, we now also consider two-sided specification limits. An industrial example illustrates the method.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.subjectExtreme value indexeng
dc.subjectFraction defectiveeng
dc.subjectGeneralized Pareto distributioneng
dc.subjectPeak over Threshold methodeng
dc.subjectLikelihood Moment estimateeng
dc.subjectZhang-Stephens estimateeng
dc.subject.ddc510 Mathematiknone
dc.titleTwo-sided variable inspection plans for arbitrary continuous populations with unknown distributionnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/21823-9
dc.identifier.doihttp://dx.doi.org/10.18452/21071
dc.type.versionacceptedVersionnone
local.edoc.container-titleAdvances in statistical analysisnone
local.edoc.pages16none
local.edoc.type-nameZeitschriftenartikel
local.edoc.institutionMathematisch-Naturwissenschaftliche Fakultätnone
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-publisher-nameSpringernone
local.edoc.container-publisher-placeBerlin, Heidelbergnone
local.edoc.container-volume103none
local.edoc.container-firstpage437none
local.edoc.container-lastpage452none
dc.description.versionPeer Reviewednone
dc.identifier.eissn1863-818X

Show simple item record