Show simple item record

2020-03-26Dissertation DOI: 10.18452/21289
Photochromism of Arylazotetracyanocyclopentadienides and Excited State Activation Barriers of Dihydropyrene Switches
dc.contributor.authorGarmshausen, Yves
dc.date.accessioned2020-03-26T15:03:27Z
dc.date.available2020-03-26T15:03:27Z
dc.date.issued2020-03-26none
dc.identifier.urihttp://edoc.hu-berlin.de/18452/22058
dc.description.abstractFür Dihydropyrene ist die 6 pi Elektrozyklisierung für gewöhnlich schnell, wohingegen die Cycloreversion durch eine Aktivierungsbarriere im angeregten Zustand ineffizient wird. Die Substitution mit Donor- und Akzeptorgruppen erzeugt ein „push-pull“ System, welches eine bathochrome Verschiebung der Absorption in den tief roten Bereich (730 nm onset) zur Folge hat. Das „push-pull” System polarisiert den Dihydropyrenkern, was ein Absenken der Aktivierungsbarriere im angeregten Zustand zur Folge hat und in einer erhöhten Quantenausbeute resultiert. Es wird weiter gezeigt, wie dies in nicht-permanenter Art und Weise durch Katalyse vollzogen werden kann, indem eine protonierte Spezies mit einer geringeren Aktivierungsbarriere im angeregten Zustand gebildet wird. Da Dihydropyrene im sichtbaren Bereich absorbieren und im Allgemeinen als T-Typ negativ photochrom betrachtet werden, ist ein Schalten ohne die Verwendung von UV Licht möglich. Für die Substanzklasse der Azobenzole wird ein neuer aromatischer Substituent anstelle eines der Phenylreste untersucht. Die Bandenseparation von bis zu 80 nm erlaubt hohe photostationäre Zustände von ≈ 90 % für beide Richtungen. Die hohen Extinktionskoeffizienten von ≈ 20000 L mol 1cm 1 für das E Isomer, führen zu einer gesteigerten Absorption im Vergleich zu herkömmlichen Azobenzolen. Weiterhin kann die Löslichkeit der Verbindungen, durch die Wahl des Gegenions moduliert werden, was es ermöglicht in Tetrahydrofuran, Acetonitril, Wasser, sowie einer ionischen Flüssigkeit zu schalten. Mit höherer Polarität des Lösungsmittels wird die Absorptionsbande des E Isomers zu längeren Wellenlängen hin verschoben und die thermischen Rückreaktion beschleunigt. Die thermische Halbwertzeit der Rückreaktion kann zwischen 3 min und 13 h bei 25 °C eingestellt werden. Ebenso wurde auch das Schaltverhalten einer Azoniumspezies untersucht und eine erstaunlich lange thermische Halbwertzeit von > 2 min beobachtet.ger
dc.description.abstractFor the dihydropyrene system 6 pi electrocyclization is usually fast, while the cycloreversion is inefficient, due to an activation barrier in the excited state. It is shown, how substitution with donor and acceptor moieties creates a push-pull system, causing a bathochromic shift of the absorption spectrum to the far red (730 nm onset). The push-pull system induces a dipole in the dihydropyrene, which lowers its excited state activation barrier and therefore increases the quantum yield of the cycloreversion. Further it is shown, how this can be performed in a catalytic fashion, where protonation leads to a species with a lower barrier in the excited state. As dihydropyrenes absorb in the visible and are considered as T-type negative photochromic, they can be switched without the use of UV-light. In case of the azobenzene class, a new aromatic substitute for one of the benzene rings is investigated and shows superior switching properties. Band separation of up to 80 nm is shown, along with high photostationary states ≈ 90% favoring each of the two switching directions. Interestingly, the extinction coefficient especially of the E isomer increases to ≈ 20000 L mol-1cm-1, dramatically enhancing the absorptivity compared to normal azobenzenes. Furthermore, the solubility can be tuned by proper choice of the cation, which is used to investigate solvent effects in nonpolar, polar, and protic (water) solvents as well as in an ionic liquid. With increasing polarity, the absorbance of the E isomer is shifted to longer wavelengths, which is accompanied by a reduced thermal half-life. The half-life of the thermal reverse reaction can be tuned from 3 min to 13 h at ambient temperature. As one of the derivatives is easily protonated, switching of the corresponding azonium species has also been investigated and an astoundingly long thermal half-life of > 2 min at room temperature has been observed.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectPhotochromieger
dc.subjectDihydropyrenger
dc.subjectAzobenzolger
dc.subjectCyanocyclopentadienger
dc.subjectPhotochromismeng
dc.subjectDihydropyreneeng
dc.subjectAzobenzeneeng
dc.subjectCyanocyclopentadieneng
dc.subject.ddc547 Organische Chemienone
dc.titlePhotochromism of Arylazotetracyanocyclopentadienides and Excited State Activation Barriers of Dihydropyrene Switchesnone
dc.typedoctoralThesis
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/22058-6
dc.identifier.doihttp://dx.doi.org/10.18452/21289
dc.date.accepted2019-03-29
dc.contributor.refereeHecht, Stefan
dc.contributor.refereeList-Kratochvil, Emil
dc.contributor.refereeFuchter, Matthew
local.edoc.pages143none
local.edoc.type-nameDissertation
bua.departmentMathematisch-Naturwissenschaftliche Fakultätnone

Show simple item record