Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften
  • FORLand Working Papers
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften
  • FORLand Working Papers
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften
  • FORLand Working Papers
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften
  • FORLand Working Papers
  • View Item
2020-04Diskussionspapier DOI: 10.18452/21342
Identifying Agricultural Landscape Types for Brandenburg, Germany using IACS Data
Wolff, Saskia cc
Hüttel, Silke cc
Nendel, Claas cc
Lakes, Tobia cc
Lebenswissenschaftliche Fakultät
The increasing demand for agricultural commodities for food and energy purposes has led to intensified agricultural production. This trend may manifest in agricultural compositions and landscape configurations that can have mixed and adverse impacts on the provision of ecosystem services. We rely on the EU’s plot-based data from the Integrated Administration and Control System (IACS) to identify different types of agricultural landscapes and their spatial distribution in Brandenburg, Germany, a study region strongly characterised by intensification trends. Based on a set of landscape metrics, we are able to characterise agricultural land use and identify six types of agricultural landscapes. We rely on a two-step cluster analysis for a hexagonal grid and find that agricultural land is dominated by cropland with different degrees of fragmentation. By providing a framework using landscape metrics derived from IACS data, our approach involves clustering to identify typologies that are transferable to other regions within the EU based on existing data. This framework can offer more tailored environmental and agricultural planning based on sophisticated measures that take into account local and regional characteristics.
Files in this item
Thumbnail
FORLand-2020-23.pdf — Adobe PDF — 9.287 Mb
MD5: 6e0ffbb54afbc3c98b90f645570aacee
Cite
BibTeX
EndNote
RIS
(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International(CC BY-NC-ND 4.0) Attribution-NonCommercial-NoDerivatives 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/21342
Permanent URL
https://doi.org/10.18452/21342
HTML
<a href="https://doi.org/10.18452/21342">https://doi.org/10.18452/21342</a>