Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2020-06-10Dissertation DOI: 10.18452/21391
On the derivation of effective gradient systems via EDP-convergence
Frenzel, Thomas
Mathematisch-Naturwissenschaftliche Fakultät
Diese Dissertation beschäftigt sich mit EDP-Konvergenz. Dabei handelt es sich um einen Konvergenzbegriff auf dem Gebiet der verallgemeinerten Gradientensysteme und metrischen Gradientensysteme, der geeignet ist für Gradientenflüsse, die von einem kleinen Parameter abhängen. EDP-Konvergenz liefert einen Algorithmus, der es erlaubt in der Energie und dem Dissipationspotenzial zum Grenzwert überzugehen. Es ist die fundamentale Frage evolutionärer Γ-Konvergenz, wie das Limes-Dissipationspotenzial berechnet werden kann. Das Ziel dieser Arbeit ist es aufzuzeigen, dass EDP-Konvergenz das mikro- und das makroskopische Dissipationspotenzial in einer sinnvollen und eindeutigen Art und Weise in Beziehung setzt. Anhand von drei Beispielen wird der Konvergenzbegriff untersucht: die Diffusionsgleichung auf einem dünnen, dreischichtigen Gebiet, die Poröse-Medien-Gleichung mit einer dünnen Membran und ein Modell mit oszillierender Energie. Es wird die Definition von relaxierter EDP-Konvergenz und EDP-Konvergenz mit Kippung motiviert. EDP-Konvergenz basiert auf dem Prinzip, dass es ein Gleichgewicht zwischen Energie und Dissipation gibt – das Energie-Dissipations-Prinzip (EDP). Mittels Γ-Konvergenz wird sowohl in der Energie, als auch dem totalen Dissipationsfunktional zum Grenzwert übergegangen. Durch die zusätzliche Entkopplung von Zustand und Triebkraft wird die Dissipationslandschaft erkundet und die kinetische Beziehung des Limessystems ermittelt. Das Modell mit oszillierender Energie zeigt die Bedeutung der kinetischen Beziehung – und damit der Kippung – für die Herleitung des Limes-Dissipationspotenzials auf. Die Modelle mit Wasserstein-Dissipation zeigen, dass das Limes-Dissipationspotenzial nicht der naive Grenzwert ist. Insbesondere können klassische Gradientensysteme mit quadratischer Dissipation zu verallgemeinerten Gradientensysteme konvergieren.
 
In the realm of generalized gradient systems and metric gradient systems we study a notion of convergence suited for gradient flows which depend on a small parameter. This notion is called EDP-convergence. In order to understand the convergence of gradient systems we need an algorithm to derive the limiting energy as well as the limiting dissipation potential. The fundamental question of evolutionary Γ-convergence is how to compute the limit dissipation potential. The aim of this thesis is to show that EDP-convergence connects the microscopic dissipation potential with the macroscopic, i.e. limiting, dissipation potential in a meaningful and unique way. As a proof of concept 3 different examples are presented: (i) the diffusion equation on a thin sandwich-like domain, (ii) the porous medium equation with a thin interface and (iii) a wiggly energy model. We show how the gradient flow concept that is used in this thesis can be used to obtain also gradient flows with respect to the Wasserstein metric. We motivate the definition of relaxed EDP-convergence and EDP- convergence with tilting. EDP-convergence is based upon the principle that there is an energy-dissipation-balance involving the total dissipation functional and the energy difference – the energy-dissipation-principle (EDP). The limit passage, in both the energy and the total dissipation functional, is performed in terms of Γ-convergence. By perturbing the flow as well as the driving force, the dissipation-landscape is explored and a kinetic relation for the limit system can be established. The wiggly energy model demonstrates the importance of the kinetic relation for the construction of the limiting dissipation potential and thus the introduction of tilts. The models with a Wasserstein dissipation show that the limiting dissipation potential is not the naive limit. In particular, classical gradient systems with a quadratic dissipation potential converge to a generalized gradient systems.
 
Files in this item
Thumbnail
dissertation_frenzel_thomas.pdf — Adobe PDF — 1.163 Mb
MD5: c594f6ffc18bd67157a8d20b766bc616
Cite
BibTeX
EndNote
RIS
(CC BY-SA 4.0) Attribution-ShareAlike 4.0 International(CC BY-SA 4.0) Attribution-ShareAlike 4.0 International(CC BY-SA 4.0) Attribution-ShareAlike 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/21391
Permanent URL
https://doi.org/10.18452/21391
HTML
<a href="https://doi.org/10.18452/21391">https://doi.org/10.18452/21391</a>