Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
  • edoc-Server Home
  • Artikel und Monographien
  • Zweitveröffentlichungen
  • View Item
2019-09-24Zeitschriftenartikel DOI: 10.18452/21490
Integrating out nuisance parameters for computationally more efficient Bayesian estimation
An Illustration and Tutorial
Hecht, Martin cc
Gische, Christian
Vogel, Daniel cc
Zitzmann, Steffen
Lebenswissenschaftliche Fakultät
Bayesian estimation has become very popular. However, run time of Bayesian models is often unsatisfactorily high. In this illustration, we show how to reduce run time by (a) integrating out nuisance model parameters and by (b) reformulating the model based on covariances and means. The core concept is to use the sample scatter matrix which is in our case Wishart distributed with the model-implied covariance matrix as the scale matrix. To illustrate this approach, we choose the popular multi-level null (intercept-only) model, provide a step-by-step instruction on how to implement this model in a multi-purpose Bayesian software, and show how structural equation modeling techniques can be employed to bypass mathematically challenging derivations. A simulation study showed that run time is considerably reduced and an empirical example illustrates our approach. Further, we show how the JAGS sampling progress can be monitored and stopped automatically when convergence and precision criteria are reached.
Files in this item
Thumbnail
Integrating Out Nuisance Parameters for Computationally More Efficient Bayesian Estimation An Illustration and Tutorial.pdf — Adobe PDF — 935.6 Kb
MD5: fb01f629b40cd483acaf963caca47e5f
Notes
This article was supported by the Open Access Publication Fund of Humboldt-Universität zu Berlin.
Cite
BibTeX
EndNote
RIS
(CC BY-NC 4.0) Attribution-NonCommercial 4.0 International(CC BY-NC 4.0) Attribution-NonCommercial 4.0 International(CC BY-NC 4.0) Attribution-NonCommercial 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/21490
Permanent URL
https://doi.org/10.18452/21490
HTML
<a href="https://doi.org/10.18452/21490">https://doi.org/10.18452/21490</a>