Show simple item record

2019-09-24Zeitschriftenartikel DOI: 10.18452/21490
Integrating out nuisance parameters for computationally more efficient Bayesian estimation
dc.contributor.authorHecht, Martin
dc.contributor.authorGische, Christian
dc.contributor.authorVogel, Daniel
dc.contributor.authorZitzmann, Steffen
dc.date.accessioned2020-06-17T12:38:34Z
dc.date.available2020-06-17T12:38:34Z
dc.date.issued2019-09-24none
dc.identifier.urihttp://edoc.hu-berlin.de/18452/22224
dc.descriptionThis article was supported by the Open Access Publication Fund of Humboldt-Universität zu Berlin.none
dc.description.abstractBayesian estimation has become very popular. However, run time of Bayesian models is often unsatisfactorily high. In this illustration, we show how to reduce run time by (a) integrating out nuisance model parameters and by (b) reformulating the model based on covariances and means. The core concept is to use the sample scatter matrix which is in our case Wishart distributed with the model-implied covariance matrix as the scale matrix. To illustrate this approach, we choose the popular multi-level null (intercept-only) model, provide a step-by-step instruction on how to implement this model in a multi-purpose Bayesian software, and show how structural equation modeling techniques can be employed to bypass mathematically challenging derivations. A simulation study showed that run time is considerably reduced and an empirical example illustrates our approach. Further, we show how the JAGS sampling progress can be monitored and stopped automatically when convergence and precision criteria are reached.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY-NC 4.0) Attribution-NonCommercial 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subjectBayesian analysiseng
dc.subjectrun time optimizationeng
dc.subjectnuisance parameterseng
dc.subjectmulti-level modelingeng
dc.subjectstructural equation modelingeng
dc.subjectsampler monitoringeng
dc.subject.ddc300 Sozialwissenschaftennone
dc.titleIntegrating out nuisance parameters for computationally more efficient Bayesian estimationnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/22224-7
dc.identifier.doihttp://dx.doi.org/10.18452/21490
dc.type.versionpublishedVersionnone
local.edoc.pages12none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-year2020none
dc.description.versionPeer Reviewednone
dc.identifier.eissn1532-8007
dc.title.subtitleAn Illustration and Tutorialnone
dcterms.bibliographicCitation.doi10.1080/10705511.2019.1647432
dcterms.bibliographicCitation.journaltitleStructural equation modeling : a multidisciplinary journalnone
dcterms.bibliographicCitation.volume27none
dcterms.bibliographicCitation.issue3none
dcterms.bibliographicCitation.originalpublishernamePsychology Press, Taylor & Francis Groupnone
dcterms.bibliographicCitation.originalpublisherplaceNew York, NYnone
dcterms.bibliographicCitation.pagestart483none
dcterms.bibliographicCitation.pageend493none
bua.departmentLebenswissenschaftliche Fakultätnone

Show simple item record