Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2020-07-21Kumulative Dissertation DOI: 10.18452/21528
Development of Optical Ratiometric Nanosensor Systems
Radunz, Sebastian
Mathematisch-Naturwissenschaftliche Fakultät
Optische Sonden für die Bildgebung auf Grundlage des pH-Wertes sind für die Wissenschaft von großem Interesse, da es sich beim pH-Wert um eine entscheidende Kenngröße für viele Prozesse in der Biotechnologie, Biologie, medizinische Diagnostik, biomedizinische Forschung und Materialkorrosion handelt. Optische pH-Sensoren, deren Funktionsprinzip auf dem photophysikalischen Prozess Fluoreszenz basieren, sind dabei von besonderem Interesse, da die Fluoreszenz eine sehr hohe Empfindlichkeit, welche sogar die Auflösung einzelner Moleküle ermöglicht, bietet. Dies ermöglicht den Einsatz von molekularen über nanoskaligen Sensorformaten bis hin zur Anwendung in planaren Optoden oder faseroptischen Sensoren, und gilt, neben der nicht-invasiven, zerstörungsfreien und kontaktlosen Natur optischer Fluoreszenzmessungen, als anwendungsfreundliche Eigenschaft dieser optischen Sensoren. Der Informationsgehalt fluoreszenzintensität-basierender Sensoren ist normalerweise unspezifisch auf die An- oder Abwesenheit des Fluorophors und des Analyten beschränkt. Weiterhin kann er durch Schwankungen der Intensität des Anregungslichts und Änderungen der Fluorophorkonzentration, z.B. durch Photodegradation, beeinflusst werden. Daher werden Fluoreszenzsensoren oftmals in referenzierten Systemen verwendet. Diese Systeme ermöglichen, durch die Einführung einer analyt-inerten Referenz, ein duales, ratiometrisches Auslesen der Fluoreszenzintensitäten von zwei spektral unterscheidbaren Komponenten. In dieser Arbeit wird das konzeptionelle Design einer modular variierbaren, auf mehreren Komponenten basierenden Plattform für die ratiometrische optische Analytmessung vorgestellt. Dazu wurden fluoreszente, leicht zugängliche und analyt-sensitive Boron-Dipyrromethene (BODIPYs) mit durch nahes Infrarot (NIR) anregbare, mehrfarbig emittierende Aufkonvertierungs-Nanopartikel (UCNPs) kombiniert. Das Sensorprizip beruht dabei auf einem inneren Filter-Effekt der spektral abgestimmten Komponenten.
 
Optical probes for monitoring, imaging, and sensing of pH are of great interest for the scientific community as pH is a crucial marker for many processes in biotechnology, biology, medical diagnostics, biomedical research, and material corrosion. Thereby, optical pH sensors based on fluorescence have attracted interest in particular as fluorescence offers a high sensitivity down to the single molecule level, can be read out with relatively simple and readily miniaturized instrumentation, and allows online in situ measurements. Also the versatility ranging from molecular and nanosensor formats to planar optodes and fiber-optic sensors, and the non-invasive, non-destructive, and contactless nature of the measurement are application-friendly features. The information content, which is offered by a fluorescence intensity-based sensor, is usually unspecific and limited on the presence or the absence of the chromophore or analyte and can additionally be hampered by fluctuation of the excitation light intensity and changes in fluorophore concentration, e.g., due to photobleaching. Therefore, many fluorescence sensors are utilized in referenced systems, which enable twowavelength ratiometric measurements of the fluorescence intensity by the introduction of an analyte-inert reference with a spectrally distinguishable emission. This work presents the rational design of a versatile, modular, multi-component-based platform for ratiometric optical analyte sensing that can be simply adapted to different formats and measurement geometries. Therefore, readily available analyte-responsive fluorescent boron-dipyrromethene (BODIPY) dyes and near infrared (NIR)-excitable multicolouremissive upconversion nanoparticles (UCNPs) were combined utilizing an inner filter-based strategy with spectrally matched moieties.
 
Files in this item
Thumbnail
dissertation_radunz_sebastian.pdf — Adobe PDF — 37.73 Mb
MD5: 34419a729cf43ce1265a14300a68070a
References
References: https://doi.org/10.1016/j.snb.2017.05.080
References: https://doi.org/10.1021/acs.jpca.9b11859
References: https://doi.org/10.1021/acs.jmedchem.9b01873
References: https://doi.org/10.1021/acs.jpcc.8b09819
References: https://doi.org/10.1021/acs.analchem.9b01174
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/21528
Permanent URL
https://doi.org/10.18452/21528
HTML
<a href="https://doi.org/10.18452/21528">https://doi.org/10.18452/21528</a>