Show simple item record

2020-08-10Dissertation DOI: 10.18452/21647
Control of the Electrical Transport through Single Molecules and Graphene
dc.contributor.authorSeifert, Christian
dc.date.accessioned2020-08-10T10:48:24Z
dc.date.available2020-08-10T10:48:24Z
dc.date.issued2020-08-10none
dc.identifier.urihttp://edoc.hu-berlin.de/18452/22375
dc.description.abstractDer Erste dieser Arbeit befasst sich mit der STM Untersuchung einer Grenzschicht in umgebender Atmosphäre, welche sich durch die Adsorption von Graphen auf einer Glimmeroberfläche ausbildet. Durch die umgebene Luftfeuchtigkeit interkalieren Wassermoleküle in diese Grenzschicht. Durch die Variation der relativen Luftfeuchtigkeit gibt diese Wasser ab bzw. nimmt auf, und es manifestieren sich sternförmig wachsende Fraktale, in denen Graphen etwa um den Durchmesser eines Wassermoleküls an Höhe absinkt. Die STM Untersuchung, welche primär sensitiv auf die Zustandsdichte von Graphen reagiert, zeigte, dass sich anders als in den SFM Untersuchungen, zusätzliche signifikante Höhenänderungen von Graphen innerhalb der Fraktale bildeten. Dieses deutet auf eine Wasserschicht hin, welche Domänen mit signifikant unterscheidbaren Polarisationsrichtungen aufweisen, welche die Zustandsdichte von Graphen verändern kann. Dies ist aber gleichbedeutend mit der Annahme, dass sich in jener Grenzschicht mindestens zwei oder mehr lagen Wasser bilden müssen. Der zweiten Teil befasst sich mit der STM Untersuchung einer funktionalisierten Oberfläche die charakterisiert ist durch eine leitende Oberfläche (Graphen und HOPG) adsorbierten funktionalisierte Dyade an einer Fest-Flüssig Grenzfläche. Diese Dyade besteht im Wesentlichen aus einem Zink-Tetraphenylporphyrin (ZnTPP) und mit diesem über einem flexiblen Arm verbundenen Spiropyranderivat. Letztere ändert seine Konformation durch die Einstrahlung mit Licht geeigneter Wellenlänge, womit sich das Dipolmoment stark ändert. Es zeigte sich, dass das Schaltverhalten auf einen Graphen mit dem Schaltverhalten einer Dyade in Lösung vergleichbar ist. Dieses lässt den Schluss zu, dass das Schalteigenschaften einer einzelnen Dyade auf das adsorbierte Kollektiv übertragen werden kann, da es keine signifikanten beeinflussenden Wechselwirkungen durch die leitende Oberfläche und der benachbarten Dyaden auswirkte.ger
dc.description.abstractThe first of this two-part work deals with the STM investigation of an interface in the surrounding natural atmosphere, which is formed by the adsorption of the conductive graphene onto the mica surface. In this interface, water molecules may intercalate by the surrounding humidity. By varying the relative humidity, the interface is rewetted, respectively, dewetted and it manifests itself in a star shape growing fractals, where the height of graphene is decreased by approximately the diameter of one water molecule. The STM investigation - which is primarily sensitive to the density of states of graphene - shows that additional significant changes in the height of graphene are formed within the fractal, unlike in the SFM investigations. This suggests that there is a water layer by which the density of graphene is differently affected by domains with significant distinguishable polarisation alignments. However, this is equivalent to the assumption that there are two or more water layers exist within the interface. The second part of this work deals with the STM investigation of a functionalized surface characterised by a functionalized dyad adsorbed onto a conductive surface (graphene and HOPG) at a solid-liquid interface. This dyad essentially comprises a zinc-tetraphenylporphyrin (ZnTPP) and is connected with a spiropyran derivative via a flexible linker. This changes its conformation through irradiation with light with a suitable wavelength, by which the dipole moment is also strongly changed. It was found that the switching behaviour of a graphene-based conductive surface is comparable with the switching behaviour of a dyad, which itself can move freely in solution. This leads to the conclusion that the switching properties of a single dyad can be transmitted to its collective because it affected no significant influence interactions by the conductive surface and the adjacent dyads.eng
dc.language.isoengnone
dc.publisherHumboldt-Universität zu Berlin
dc.rights(CC BY 4.0) Attribution 4.0 Internationalger
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectMolekülger
dc.subjectSelbstorganisationger
dc.subjectDynamikger
dc.subjectelektronische Eigenschaftenger
dc.subjectmoleculeeng
dc.subjectself assemblingeng
dc.subjectelectronic propertieseng
dc.subjectdynamicseng
dc.subject.ddc530 Physiknone
dc.titleControl of the Electrical Transport through Single Molecules and Graphenenone
dc.typedoctoralThesis
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/22375-7
dc.identifier.doihttp://dx.doi.org/10.18452/21647
dc.date.accepted2018-02-15
dc.contributor.refereeRabe, J.P.
dc.contributor.refereeTreimer, W.
dc.contributor.refereeOpitz, A.
dc.subject.rvkUP 7750
local.edoc.pages108none
local.edoc.type-nameDissertation
local.edoc.institutionMathematisch-Naturwissenschaftliche Fakultätnone

Show simple item record