Cohomological Arithmetic Chow Rings
dc.contributor.author | Burgos Gil, Jose Ignacio | |
dc.contributor.author | Kramer, Jürg | |
dc.contributor.author | Kühn, Ulf | |
dc.date.accessioned | 2020-08-19T12:51:28Z | |
dc.date.available | 2020-08-19T12:51:28Z | |
dc.date.issued | 2006-09-21 | none |
dc.identifier.uri | http://edoc.hu-berlin.de/18452/22459 | |
dc.description | This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively. | none |
dc.description.abstract | We develop a theory of abstract arithmetic Chow rings, where the role of the fibres at infinity is played by a complex of abelian groups that computes a suitable cohomology theory. As particular cases of this formalism we recover the original arithmetic intersection theory of Gillet and Soulé for projective varieties. We introduce a theory of arithmetic Chow groups, which are covariant with respect to arbitrary proper morphisms, and we develop a theory of arithmetic Chow rings using a complex of differential forms with log-log singularities along a fixed normal crossing divisor. This last theory is suitable for the study of automorphic line bundles. In particular, we generalize the classical Faltings height with respect to logarithmically singular hermitian line bundles to higher dimensional cycles. As an application we compute the Faltings height of Hecke correspondences on a product of modular curves. | eng |
dc.language.iso | eng | none |
dc.publisher | Humboldt-Universität zu Berlin | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | Arakelov geometry | eng |
dc.subject | sheaf cohomology | eng |
dc.subject | Deligne–Beilinson cohomology | eng |
dc.subject | good hermitian metrics | eng |
dc.subject.ddc | 510 Mathematik | none |
dc.title | Cohomological Arithmetic Chow Rings | none |
dc.type | article | |
dc.identifier.urn | urn:nbn:de:kobv:11-110-18452/22459-7 | |
dc.identifier.doi | http://dx.doi.org/10.18452/21747 | |
dc.type.version | publishedVersion | none |
local.edoc.pages | 172 | none |
local.edoc.type-name | Zeitschriftenartikel | |
local.edoc.container-type | periodical | |
local.edoc.container-type-name | Zeitschrift | |
local.edoc.container-year | 2007 | none |
dc.description.version | Peer Reviewed | none |
dc.identifier.eissn | 1475-3030 | |
dcterms.bibliographicCitation.doi | 10.1017/S1474748007000011 | |
dcterms.bibliographicCitation.journaltitle | Journal of the Institute of Mathematics of Jussieu | none |
dcterms.bibliographicCitation.volume | 6 | none |
dcterms.bibliographicCitation.issue | 1 | none |
dcterms.bibliographicCitation.originalpublishername | Cambridge Univ. Press | none |
dcterms.bibliographicCitation.originalpublisherplace | Cambridge | none |
dcterms.bibliographicCitation.pagestart | 1 | none |
dcterms.bibliographicCitation.pageend | 172 | none |
bua.department | Mathematisch-Naturwissenschaftliche Fakultät | none |