Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
  • edoc-Server Home
  • Qualifikationsarbeiten
  • Dissertationen
  • View Item
2020-09-04Dissertation DOI: 10.18452/21829
Modular Graph Forms and Scattering Amplitudes in String Theory
Gerken, Jan Erik
Mathematisch-Naturwissenschaftliche Fakultät
In dieser Dissertation untersuchen wir die Niedrigenergieentwicklung von Streuamplituden geschlossener Strings auf Einschleifenniveau (d.h. auf Genus eins) in einem zehndimensionalen Minkowski-Hintergrund mit Hilfe einer speziellen Klasse von Funktionen, den sogenannten modularen Graphenformen. Diese erlauben eine systematische Berechnung der Niedrigenergieentwicklung und erfüllen viele nicht-triviale algebraische- und Differentialgleichungen. Wir studieren diese Relationen detailliert und leiten Basiszerlegungen für eine große Zahl modularer Graphenformen her. Eines der Ergebnisse dieser Dissertation ist ein Mathematica-Paket, welches diese Vereinfachungen automatisiert. Wir benutzen diese Techniken, um die führenden Niedrigenergieordnungen der Streuamplitude von vier Gluonen im heterotischen String auf Einschleifenniveau zu berechnen. Für Stringamplituden auf Baumniveau bildet die Einwertigkeitsabbildung multipler Zetawerte offene Stringamplituden auf geschlossene Stringamplituden ab. Wir zeigen, dass ein bestimmter Vorschlag für die Definition einer geeigneten einschleifen-Verallgemeinerung, der sogenannten elliptische Einwertigkeitsabbildung, nicht alle Terme im heterotischen String reproduzieren kann. Ferner studieren wir eine Erzeugendenfunktion, die vermutlich die Torusintegrale aller perturbativen Theorien geschlossener Strings enthält. Wir bestimmen eine Differentialgleichung, die von dieser Erzeugendenfunktion erfüllt wird und lösen sie mit Hilfe von pfadgeordneten Exponentialen, was auf iterierte Integrale von holomorphen Eisensteinreihen führt. Da eine ähnliche Konstruktion im offenen String zur Verfügung steht, eröffnet dies außerdem eine neue Perspektive auf die elliptische Einwertigkeitsabbildung.
 
In this thesis, we investigate the low-energy expansion of scattering amplitudes of closed strings at one-loop level (i.e. at genus one) in a ten-dimensional Minkowski background using a special class of functions called modular graph forms. These allow for a systematic evaluation of the low-energy expansion and satisfy many non-trivial algebraic and differential relations. We study these relations in detail, leading to basis decompositions for a large number of modular graph forms which greatly reduce the complexity of the expansions of the integrals appearing in the amplitude. One of the results of this thesis is a Mathematica package which automatizes these simplifications. We use these techniques to compute the leading low-energy orders of the scattering amplitude of four gluons in the heterotic string at one-loop level. For tree-level string amplitudes, the single-valued map of multiple zeta values maps open-string amplitudes to closed-string amplitudes. The definition of a suitable one-loop generalization, a so-called elliptic single-valued map, is an active area of research and we show that a certain conjectural definition for this map, which was successfully applied to maximally supersymmetric amplitudes, cannot reproduce all terms in the heterotic string which has half-maximal supersymmetry. In order to arrive at a more systematic treatment of modular graph forms and at a different perspective on the elliptic single-valued map, we then study a generating function which conjecturally contains the torus integrals of all perturbative closed-string theories. We determine a differential equation satisfied by this generating function and solve it in terms of path-ordered exponentials, leading to iterated integrals of holomorphic Eisenstein series. Since a similar construction is available for the open string, this opens a new perspective on the elliptic single-valued map.
 
Files in this item
Thumbnail
dissertation_jan_erik_gerken.pdf — Adobe PDF — 4.361 Mb
MD5: 89d7237c4b83d0a9f9f5c5758822520b
References
Has Part: https://doi.org/10.1007/JHEP01(2019)131
Has Part: https://doi.org/10.1007/JHEP01(2019)052
Has Part: https://doi.org/10.1007/JHEP01(2020)064
Has Part: https://doi.org/10.1007/JHEP07(2020)190
Has Part: http://arxiv.org/abs/2007.05476
Cite
BibTeX
EndNote
RIS
(CC BY-NC-SA 4.0) Attribution-NonCommercial-ShareAlike 4.0 International(CC BY-NC-SA 4.0) Attribution-NonCommercial-ShareAlike 4.0 International(CC BY-NC-SA 4.0) Attribution-NonCommercial-ShareAlike 4.0 International(CC BY-NC-SA 4.0) Attribution-NonCommercial-ShareAlike 4.0 International
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/21829
Permanent URL
https://doi.org/10.18452/21829
HTML
<a href="https://doi.org/10.18452/21829">https://doi.org/10.18452/21829</a>